Septage Receiving Site Feasibility Study

Record of Findings
April 28, 2017
Table of Contents

1. Executive Summary ...2
2. Background ..2
3. Site Review Summary ..3
 3.1 Existing Septage Receiving Facilities and Study Area3
 3.2 Identification and Screening of Initial Sites (GIS Analysis)...............................4
 3.3 Phase I Site Screening ..4
4. Observations During Shutdown of Colvin Run Septage Receiving Facility5
5. Conclusions ..5

Appendix A: GIS Analysis and Initial Site Screening ..A-1
 A.1 Data Acquisition ...A-1
 A.2 The Study Area (Step 1) ..A-1
 A.3 Minimum Pipe and Road Access (Step 2) ...A-1
 A.4 Ownership and Zoning (Step 3) ...A-2
 A.5 Residential Proximity (Step 4) ...A-3
 A.6 Initial Site Constraints (Step 5) ...A-3

Appendix B: GIS Analysis Presentation..B-1

Appendix C: Phase I Site Screening ...C-1
 C.1 Site Area Outside of the Floodplain ...C-1
 C.2 Access to the Site ...C-1
1. Executive Summary

The Fairfax County (County) Department of Public Works and Environmental Services (DPWES) commissioned a study of its septage receiving program and concluded that the existing Colvin Run Septage Receiving Facility (SRF) would be permanently closed effective March 27, 2017. The County’s septage receiving capabilities will be consolidated to the septage receiving station at Noman M. Cole Jr. Pollution Control Plant (NMCPCP).

The study commenced in October 2014 and focused on the identification of suitable alternate locations for the Colvin Run SRF to address the facility’s obsolete infrastructure that posed unacceptable health and environmental risks. During the study, the Colvin Run SRF was temporarily closed on June 27, 2016 to accommodate the rehabilitation of the Difficult Run Pump Station (located next to the Colvin Run SRF) and Force Main. Since the temporary closure of the facility, the County has not observed illicit discharges, nor received septage hauler complaints, and haulers have rerouted their trucks to deliver waste to alternative facilities that accept Fairfax County septage. In February 2017, the study progressed to a point where the County determined there are no economically viable locations, including the Colvin Run site itself, for a replacement SRF that meets engineering, operational and site requirements for such a facility in the northern portion of the County. Hence, the County will not pursue construction of a replacement facility in the northern portion of the County.

2. Background

The Fairfax County Board of Supervisors and DPWES currently owns and operates, respectively, two septage receiving stations, one in the northern part of the County at Colvin Run Road in Great Falls, and one in the southern part of the County at the NMCPCP in Lorton. In response to a December 2013 citizen petition regarding public concerns about the Colvin Run SRF, the Wastewater Collection Division (WCD) of DPWES commissioned a Septage Receiving Site Feasibility study to consider the potential and feasibility of alternative septage receiving programs for the County. The goals and objectives of this study were to:

- Review the existing operations of each County septage receiving facility (SRF) and compare with best practices and operations of other area utilities
- Assess community needs for continuing to operate a SRF in the northern part of the county
- Identify potential alternative sites for replacement of the Colvin Run SRF
- Review hauled septage waste rate structures of neighboring communities and develop a competitive rate structure to implement in the County to support the operation and maintenance of both County SRFs

Hazen and Sawyer (Hazen) commenced the Septage Receiving Site Feasibility study on October 17, 2014 under Task Order No. 14-05 of their Wastewater Basic Ordering Agreement (originally dated April 11, 2013). A draft report summarizing the initial results of the study was submitted in June 2015. A public meeting was held on February 18, 2016 at the Bechtel Conference Center in Reston to present the initial
results, which indicated that the Lake Fairfax Maintenance Facility was the preferred site of those considered in the initial evaluation. Only County-owned sites were considered in the initial evaluation. In order to address community feedback regarding the consideration of alternate sites not owned by the County, the scope for the identification and evaluation of potential replacement sites was expanded in Revision 2 under Task Order No. 14-05 to include commercial and industrial zoned properties. This revision commenced on August 2, 2016 and expanded the scope to include a more detailed, Geographic Information System (GIS) analysis for identification and additional screening of potential sites.

This Record of Findings provides a summary and conclusions of the GIS analysis and additional screening of potential sites, cost information for a potential new SRF facility, and observations of septage hauler behavior made during the Colvin Run SRF closure. Each have been taken into account in evaluating the existing and alternative septage receiving programs.

3. Site Review Summary

3.1 Existing Septage Receiving Facilities and Study Area

Fairfax County’s existing wastewater collection system serves both sewered and non-sewered areas. Non-sewered areas rely on privately-owned septage hauling companies to remove collected septic waste from individual household septic tanks and dispose of it at a SRF. Per the Sewage Handling and Disposal Regulations of the Virginia Administrative Code, the County is required to provide receiving facilities. In addition, the County maintains inter-jurisdictional agreements that allow for disposal of septage at SRFs outside the county. A summary of existing septage facilities that are permitted to receive septage from Fairfax County is provided in Table 3-1 below.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noman M. Cole Jr. Pollution Control Plant</td>
<td>Fairfax County Board of Supervisors</td>
</tr>
<tr>
<td>Colvin Run Septage Receiving Facility</td>
<td>Fairfax County Board of Supervisors</td>
</tr>
<tr>
<td>Millard H. Robbins Jr. Water Reclamation Plant</td>
<td>Upper Occoquan Service Authority (UOSA)</td>
</tr>
<tr>
<td>Blue Plains Advanced Wastewater Treatment Plant</td>
<td>District of Columbia Water and Sewer Authority (DC Water)</td>
</tr>
</tbody>
</table>

These SRFs are located so that approximately equal coverage is provided to all of Fairfax County, with each facility being located within 20 miles of its nearest two neighboring facilities (see Page B-6 of Appendix B for the general service areas of the SRFs). The study area for the Septage Receiving Site Feasibility study was established to ensure that any replacement facility location would maintain the general existing geographic coverage that the Colvin Run SRF provides.
3.2 Identification and Screening of Initial Sites (GIS Analysis)

Hazen implemented a GIS model to narrow the field of potential sites for an SRF from an initial pool of 169,778 land parcels located within the 10-mile radius study area surrounding the Colvin Run SRF (shown in Page B-6 of Appendix B). Hazen collected general parcel data, such as location, size, ownership and zoning, from Fairfax County’s open data portal. Fairfax County sanitary sewer data and Fairfax County Park Authority (FCPA) parcel data was acquired directly from Fairfax County. The data sets were used to develop a GIS-based database that would be used to analyze the feasibility of individual parcels for a SRF within the established study area. A set of criteria consisting of general engineering, operational and accessibility requirements, zoning restrictions, land use and ownership status, and broad site feature requirements was applied to screen for potential sites. Based on this analysis, 83 parcels from the 169,778 located in the study area were identified as potentially feasible sites. Details of the applied analysis criteria and the presentation illustrating the results of the GIS-analysis are included as Appendices A and B, respectively.

3.3 Phase I Site Screening

Hazen reviewed each potential location identified in the GIS Analysis on a site-by-site basis using a set of minimum acceptability criteria including the development status of the parcel and ability to locate a facility and required access entirely outside the floodplain. Based on these criteria, 29 of the 83 parcels identified in the GIS analysis passed this initial Phase I screening criteria (see Appendix C for a detailed discussion of the screening criteria and list of identified parcels) and could be carried forward to a Phase II Site Screening analysis for more detailed analysis. However, further site analysis was suspended at this point so that DPWES could determine if a septage receiving program based on full cost recovery of a new SRF and improvements to the Noman Cole SRF was economical. It is important to note that the owners of the 29 sites have not been notified, as additional consideration under a Phase II analysis would be needed to further refine the selection process prior to entering discussions with owners.

Based on the assessed values of privately-owned parcels meeting the initial Phase I screening criteria and conceptual plans for a facility, Hazen determined that the capital costs for a new SRF within the study area would range from approximately $7M for a facility on County-owned land (including site improvements to accommodate the facility) to up to $13M for a facility on privately-owned land (including land acquisition costs). In order to recover the total costs (including construction, engineering and administration, capital financing, and operation and maintenance costs over a 20-year time period) of a septage receiving program consisting of a new SRF and proposed improvements at the NMCP CP septage receiving station valued at approximately $1.3M, hauling rates ranging from $120 to $160 per waste load would need to be implemented.

1 Note that the existing Colvin Run Septage Receiving Facility was not identified as a potential site based on this analysis as it is located entirely within a floodplain. The County decided over the course of this study to permanently close the Colvin Run facility effective March 27, 2017, based in part on the facility’s obsolete infrastructure, the facility’s location in a floodplain, and its proximity to homes and recreational areas, factors that together resulted in unacceptable health and environmental risks.
4. Observations During Shutdown of Colvin Run Septage Receiving Facility

During the Septage Receiving Site Feasibility Study, the Colvin Run SRF was temporarily shut down on June 27, 2016 to accommodate the rehabilitation of the Difficult Run Pump Station (located next to the Colvin Run SRF) and its force main. Following the shutdown, the County communicated frequently with septage receiving personnel at the Noman Cole Jr. Pollution Control Plant, Millard H. Robbins Jr. Water Reclamation Plant, and Blue Plains Advanced Wastewater Treatment Plant to assess how haulers serving the County accommodated the shutdown of one of the four regional SRFs. Based on this coordination, the County observed that since the Colvin Run facility shutdown, septage haulers have rerouted their trucks to deliver waste to the other facilities that accept Fairfax County septage. Hauler activity at the UOSA facility had increased by a similar level to that which had been experienced at Colvin Run, suggesting that a majority of Colvin Run users have been disposing of their collected sanitary waste at UOSA, where they were generally paying between $26 and $83 per load (based on hauler truck capacity), or an average of $55 per load.

5. Conclusions

Of the 169,778 parcels within the study area, the GIS analysis and Phase I Site Screening identified 29 sites that met the minimum feasibility criteria for a new septage receiving facility to replace the existing Colvin Run SRF. Further consideration of the 29 sites was suspended because the initial cost analysis showed that septage disposal rates ranging between $120 and $160 per haul would be required to fully recover the cost of a new septage receiving facility in northern Fairfax County and proposed improvements at the NMCPCP septage receiving station. This fee is not considered economically viable as it is two to three times the amount charged at UOSA’s septage receiving facility, which charges an average of $55 per haul. In addition, it is anticipated that haulers will pass this increase in cost of disposal to customers within Fairfax County who require this service. Based on the results of this cost analysis, as well as potential land availability, community acceptance, and other feasibility issues not yet fully evaluated for the 29 remaining sites, the County notified Hazen that the Phase II Site Screening will no longer be required as the County has decided not to construct a new SRF in the northern portion of the County. The County will consolidate its septage receiving program to the septage receiving station at NMCPCP.
Appendix A: GIS Analysis and Initial Site Screening

A. Geographic Information System (GIS) Analysis

The Geographic Information System (GIS) analysis used to identify potential parcels for a new Septage Receiving Facility (SRF) in northern Fairfax County was performed in a series of steps, as follows:

- Data Acquisition
- Identify the Study Area
- Identify accessible parcels
- Restrict parcels based on owner and zone type
- Establish a minimum distance from residential parcels
- Apply initial site constraints

A.1 Data Acquisition

The majority of the data used in this analysis were obtained from Fairfax County’s open data portal. Additional data (County sewer data and Fairfax County Park Authority (FCPA) parcel data were acquired directly from Fairfax County.

A.2 Study Area (Step 1)

The four existing septage facilities that serve Fairfax County are:

- Colvin Run SRF
- Upper Occoquan Service Authority (UOSA)
- Noman M. Cole Jr. Pollution Control Plant (NMCPCP)
- Blue Plains Advanced Wastewater Treatment Plant (WWTP)

These facilities are located such that approximately equal coverage is provided to all of Fairfax County. The study area was selected to ensure that any new facility that would replace the Colvin Run SRF would continue to maintain this coverage. Therefore, the study area was restricted to a ten-mile radius around the Colvin Run SRF. Overlaying the parcels in Fairfax County within this study area identified 169,778 privately- and publically-owned potential parcels within the study area.

A.3 Minimum Sewer and Road Access (Step 2)

Accessible parcels were determined based on two criteria:

- Sewer access
- Vehicle access

Pipe access was considered acceptable where continuous 16-inch diameter sewer pipes intersected a parcel or could be directly accessed from the parcel through an existing Fairfax County easement. A 16-inch diameter was selected to provide the capacity to accept the typical volume of a septage truck discharge. A
pipe was considered continuous if the receiving pipe does not constrict to a diameter smaller than 16 inches downstream of the parcel.

Vehicle access was considered acceptable where septage haulers could access the facility without navigating more than one Class I road. In order to be considered accessible for septage haulers, the boundary of a parcel must be within 50 feet of the centerline of the nearest road. For this analysis, the nearest road was assumed to have two lanes. The following Federal Highway Administration (FHWA) standard was incorporated into the GIS analysis:

- For a freeway, arterial, collector or local road, FHWA Standards state the standard lane width of a road to be 12 feet.

Based on FHWA standards\(^2\),\(^3\) the minimum distance between the road centerline of a two-lane road and a parcel boundary would be 36 feet. In addition to the recommendations by the FHWA, the VDOT Right of Way Manual\(^4\) was referenced for this study. Per the VDOT Right of Way Manual:

- The right of way for Class I roads – those which serve local traffic and provide access to property adjoining the road – are typically 40 feet or less.
- The right of way for Class II roads – which serve local traffic and connect to the primary highway system – are typically 40 feet or more.

The County’s preference is to minimize safety and traffic concerns within the neighboring community and avoid building a new access road for the facility or directly connecting to a larger highway. Therefore, a distance of 50 feet was considered reasonable for this criterion.

Applying the minimum receiving pipe size and minimum vehicular access criteria, 972 potential parcels were identified in Step 2.

A.4 Ownership and Zoning (Step 3)

To meet the ownership and zoning criteria, the parcel had to meet one of the following three criteria:

- County-owned
- Privately-owned parcels zoned for commercial use
- Privately-owned parcels zoned for industrial use

All County-owned land was included in the analysis for thoroughness and to minimize land acquisition costs. Public records were used to determine the owners of the parcels, and any parcels owned by Fairfax County were considered for further analysis. Parcels that were not owned by the County, but were zoned for commercial or industrial use, were included for further analysis. All residentially-zoned, privately-owned parcels were removed during this step based on discussions with the County.

Applying the ownership and zoning criteria, 210 potential parcels were identified in Step 3.

A.5 Residential Proximity (Step 4)

In order to address community feedback regarding the proximity of an SRF to private residential parcels, a filter was used that eliminated potential parcels that were closer to residential parcels than the existing Colvin Run facility. The existing facility at Colvin Run is located approximately 225 feet from the nearest residential building. In order to maintain this minimum distance, all potential parcels were examined to determine their proximity to the centroid of the nearest residentially-zoned parcel.

Applying the residential proximity criteria, 155 potential parcels were identified in Step 4.

A.6 Initial Site Constraints (Step 5)

The final step in the GIS analysis was to incorporate the following site constraints based on design or constructability concerns.

A.6.1 Minimum parcel size

The minimum parcel size was a key design consideration applied to ensure that any potential parcel would have the available space for a new facility to be constructed. The preferred lot size is one acre, but in order to prevent any potential parcels that are slightly undersized, yet suitable, from being rejected, the minimum size was set slightly less than one acre, at 0.92 acres.

A.6.2 Outside the Floodplain

Due to permitting, environmental and health concerns of siting a septage facility within a floodplain, all parcels which did not have 0.92 acres outside of the floodplain were removed.

A.6.3 Not a Resource-Based Park

Many of the County-owned parcels which met all criteria were owned by FCPA. Per the Fairfax County Great Parks, Great Communities 2010-2020 Comprehensive Park System Plan\(^5\), FCPA classifies their land as one of the following: Local Parks, Urban Parks, District Parks, Countywide Parks, Resource-Based Parks and Regional Parks.

According to this Plan, Resource-Based Parks have significant cultural and natural resources. These parks support nature, horticulture and history programs, gardening, nature watching and appreciation of local, regional, state and national history. Extensive stream valley parks are part of the resource-based park network. Typically, trails and interpretative features and facilities are the primary uses. Some resource parks may have separate areas designated for recreation purposes.

\(^5\) http://www.fairfaxcounty.gov/parks/plandev/greatparks/
For this analysis, all parcels classified as a Resource-Based Park were removed from the list of potential parcels.

Applying the initial site constraints, 83 potential parcels were identified in Step 5 and carried forward to the Phase 1 Site Screening.
Appendix B: GIS Analysis Presentation
GIS Analysis: Identification and Evaluation of Potential Sites

November 2016
Geospatial Model Analysis

• A model was developed in ArcGIS to identify parcels that met the selected criteria

• The model serves two purposes:
 • It acts as a record of the analysis
 • It allows multiple iterations to be run while varying parameters
Data Collection

• The data used in this analysis were obtained from Fairfax County’s open data portal where available: http://data.fairfaxcountygis.opendata.arcgis.com/

• Applicable County sewer data, topography and Fairfax County Park Authority (FCPA) parcel data were obtained directly from Fairfax County
Initial Parcel Selection Set

Step 1: Study Area

Step 2: Minimum Pipe and Road Access

Step 3: Ownership and Zoning

Step 4: Residential Proximity

Step 5: Initial Site Constraints

Initial Parcel Selection Set
Study Area

- The existing septage receiving facilities provide complete coverage of Fairfax County. To maintain this, the study area was set to within 10 miles of Colvin Run.
Criteria To Be Met

1. Minimum pipe size = 16 inch or greater
2. Direct Sewer Access through:
 a. the selected parcel or
 b. an Easement which connects the pipe to the selected parcel
3. Minimum road access = road centerline was within 50 feet of the parcel’s boundary.

Initial Parcel Count = 169,778
Parcels that Do Not Meet Criteria = 168,806
Parcels that Meet Criteria = 972
Criteria To Be Met

- The parcel must be County Owned or
- The parcel must be Privately-Owned and Zoned for Industrial or Commercial Use

- Privately owned, residually zoned parcels were removed

Initial Parcel Count = 972
Parcels that Do Not Meet Criteria = 762
Parcels that Meet Criteria = 210
Criteria To Be Met

1. The centroid of the parcel must be greater than 225 feet from the centroid of the nearest residentially zoned parcel.

Initial Parcel Count = 210
Parcels that Do Not Meet Criteria = 55
Parcels that Meet Criteria = 155
Criteria To Be Met

(1) Minimum parcel size is .92 acres
(2) Parcel is not 100% in the floodplain
(3) Parcel cannot be classified as a “Resource-Based Park”

Initial Parcel Count = 155
Parcels that Do Not Meet Criteria = 72
Parcels that Meet Criteria = 83
Appendix C: Phase I Site Screening

C. Phase I Site Screening

The 83 potential parcels identified in the GIS analysis were individually analyzed using publicly available aerial imagery and site drive-bys as necessary based on the following four criteria:

- Site Area Outside the Floodplain
- Access to the Site
 - Existing Development
 - Undeveloped Footprint

C.1 Site Area Outside the Floodplain

Each parcel was examined to determine if the area outside of the floodplain identified in Step 6 of the GIS Analysis was grouped, or in isolated areas throughout the parcel. For this analysis, a minimum 0.48 acre footprint of the SRF was considered, based on the inclusive area of the turnaround lane for haulers.

C.2 Access to the Site

C.2.1 Existing Development

Each parcel was examined using publicly-available aerial imagery to identify if the parcel was developed or not. A parcel was considered undeveloped if there were pervious portions of the site outside of the floodplain.

C.2.2 Undeveloped Footprint

Each undeveloped parcel was examined using publicly-available imagery to determine if the minimum footprint of the SRF (0.48 acres) could fit in the undeveloped portion of the parcel.

Applying the above criteria, 29 potential parcels were identified in Phase I Screening. A summary of the parcels is provided in Table B-1.
<table>
<thead>
<tr>
<th>Property Number</th>
<th>Zoning</th>
<th>Park Classification</th>
<th>Pipe Size (in)</th>
<th>Proximity to Residential Building (ft)</th>
<th>Supervisor District</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential</td>
<td></td>
<td>72</td>
<td>1700</td>
<td>Dranesville</td>
</tr>
<tr>
<td>2</td>
<td>Residential</td>
<td></td>
<td>72</td>
<td>750</td>
<td>Dranesville</td>
</tr>
<tr>
<td>3</td>
<td>Planned Units</td>
<td>Local</td>
<td>18</td>
<td>930</td>
<td>Hunter Mill</td>
</tr>
<tr>
<td>4</td>
<td>Industrial</td>
<td></td>
<td>18</td>
<td>710</td>
<td>Dranesville</td>
</tr>
<tr>
<td>5</td>
<td>Industrial</td>
<td></td>
<td>18</td>
<td>1430</td>
<td>Dranesville</td>
</tr>
<tr>
<td>6</td>
<td>Planned Units</td>
<td>Local</td>
<td>18</td>
<td>540</td>
<td>Dranesville</td>
</tr>
<tr>
<td>7</td>
<td>Planned Units</td>
<td>Local</td>
<td>21</td>
<td>1470</td>
<td>Dranesville</td>
</tr>
<tr>
<td>8</td>
<td>Industrial</td>
<td></td>
<td>18</td>
<td>2460</td>
<td>Dranesville</td>
</tr>
<tr>
<td>9</td>
<td>Industrial</td>
<td></td>
<td>21</td>
<td>960</td>
<td>Dranesville</td>
</tr>
<tr>
<td>10</td>
<td>Planned Units</td>
<td>Local</td>
<td>18</td>
<td>2250</td>
<td>Dranesville</td>
</tr>
<tr>
<td>11</td>
<td>Industrial</td>
<td></td>
<td>18</td>
<td>1020</td>
<td>Hunter Mill</td>
</tr>
<tr>
<td>12</td>
<td>Industrial</td>
<td></td>
<td>27</td>
<td>1310</td>
<td>Dranesville</td>
</tr>
<tr>
<td>13</td>
<td>Industrial</td>
<td></td>
<td>27</td>
<td>1750</td>
<td>Dranesville</td>
</tr>
<tr>
<td>14</td>
<td>Commercial</td>
<td>Countywide</td>
<td>16</td>
<td>1690</td>
<td>Hunter Mill</td>
</tr>
<tr>
<td>15</td>
<td>Residential</td>
<td>Countywide</td>
<td>33</td>
<td>1420</td>
<td>Hunter Mill</td>
</tr>
<tr>
<td>16</td>
<td>Residential</td>
<td>Countywide</td>
<td>24</td>
<td>1070</td>
<td>Hunter Mill</td>
</tr>
<tr>
<td>17</td>
<td>Residential</td>
<td>Countywide</td>
<td>24</td>
<td>820</td>
<td>Hunter Mill</td>
</tr>
<tr>
<td>18</td>
<td>Residential</td>
<td>Countywide</td>
<td>18</td>
<td>310</td>
<td>Hunter Mill</td>
</tr>
<tr>
<td>19</td>
<td>Residential</td>
<td></td>
<td>18</td>
<td>330</td>
<td>Hunter Mill</td>
</tr>
<tr>
<td>20</td>
<td>Commercial</td>
<td></td>
<td>21</td>
<td>950</td>
<td>Providence</td>
</tr>
<tr>
<td>21</td>
<td>Industrial</td>
<td></td>
<td>20</td>
<td>4190</td>
<td>Sully</td>
</tr>
<tr>
<td>22</td>
<td>Residential</td>
<td>District</td>
<td>27</td>
<td>560</td>
<td>Springfield</td>
</tr>
<tr>
<td>23</td>
<td>Residential</td>
<td>District</td>
<td>30</td>
<td>500</td>
<td>Springfield</td>
</tr>
<tr>
<td>24</td>
<td>Residential</td>
<td>District</td>
<td>30</td>
<td>850</td>
<td>Providence</td>
</tr>
<tr>
<td>25</td>
<td>Commercial</td>
<td></td>
<td>18</td>
<td>340</td>
<td>Providence</td>
</tr>
<tr>
<td>26</td>
<td>Industrial</td>
<td></td>
<td>24</td>
<td>660</td>
<td>Providence</td>
</tr>
<tr>
<td>27</td>
<td>Industrial</td>
<td></td>
<td>24</td>
<td>980</td>
<td>Providence</td>
</tr>
<tr>
<td>28</td>
<td>Planned Units</td>
<td>Countywide</td>
<td>18</td>
<td>1820</td>
<td>Braddock</td>
</tr>
<tr>
<td>29</td>
<td>Residential</td>
<td>Countywide</td>
<td>60</td>
<td>1150</td>
<td>Braddock</td>
</tr>
</tbody>
</table>