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1. Abstract 
Extreme high temperatures lead to population vulnerabilities such as increased instances of heat-related 
illnesses, cardiovascular disease, pulmonary disease, and even death, as well as increased energy consumption 
and infrastructure costs. People in urbanized areas experience higher temperatures than rural areas due to 
diminished vegetation and increased impervious surfaces which absorb and radiate heat. Fairfax County, 
Virginia has embarked on Resilient Fairfax, a program aimed at addressing climate adaptation and resilience. 
The NASA DEVELOP team partnered with the Fairfax County Office of Environmental and Energy 
Coordination (OEEC) to assess the extent of the urban heat island effect in the county and its most 
vulnerable populations. The team used data from Landsat 8 Operational Land Imager (OLI) and Thermal 
Infrared Sensor (TIRS), as well as the ECOsystem Spaceborne Thermal Radiometer Experiment on Space 
Station (ECOSTRESS) for the years 2013 to 2021. The study found that the hottest spots were in densely 
urbanized areas, with land surface temperatures as much as 47°F above that of undeveloped reference area 
land surface temperatures. The team used the Integrated Valuation of Ecosystem Services and Tradeoffs 
(InVEST) urban cooling model and determined that areas with higher tree canopy cover had greater heat 
mitigation capacity. Estimates from the InVEST model showed that a 4.5% increase in canopy cover across 
the county could result in a temperature reduction of up to 2.4°F in some areas. The results will allow 
partners to assess heat distribution across Fairfax County and more effectively target and prioritize effective 
heat mitigation strategies. 
 
Key Terms 
urban heat island effect, land surface temperature, vulnerability, Landsat 8 TIRS, ECOSTRESS, InVEST, 
urban development, climate adaptation 
 

2. Introduction 
2.1 Background Information 
Extreme temperatures threaten public health and infrastructure, especially in urban areas, which are home to 
over half of the world’s current population (Li, 2013). Heatwaves have a severe impact on more developed 
areas because their land cover is comprised of less vegetation and more impervious surfaces. Tree canopies 
provide shade which has a cooling effect, as does the process of evapotranspiration by plants. In contrast, 
surfaces such as asphalt and concrete absorb more heat during the day and radiate that heat back into the 
atmosphere, causing urban areas to be warmer than nearby rural areas. This phenomenon is known as the 
urban heat island effect (UHI) (Arnell, 2019). National, state, and local governments are responding to 
increasing heat by developing heat mitigation plans that aim to protect their citizens, businesses, and 
infrastructure. Determining areas of high heat exposure and vulnerability are necessary to prioritize areas for 
mitigation efforts and effectively address the UHI effect. The threat of extreme heat is causing many 
urbanized districts including Fairfax County, VA to commission further research on urban heat and potential 
mitigation techniques. 
 
Heatwaves in the United States are the deadliest type of weather event, with an average of 131 direct heat 
fatalities a year in the past 20 years (National Weather Service, n.d.). The CDC attributes 7,415 deaths in the 
United States to exposure of natural heat as the underlying or contributing cause of death from 1999 to 2010, 
an average of 618 per year (CDC, 2012). Extreme heat can result in various physiological reactions ranging 
from discomfort and dehydration to more serious conditions such as heat exhaustion and heatstroke (Epstein 
et. al, 2014). Other consequences include losses in labor productivity, increased energy consumption, and 
decreased learning (Hsu et. al, 2021). Certain populations are more sensitive to heat stress, such as children 
and the elderly, as well as people with pre-existing cardiovascular or respiratory illnesses (Rosenthal et.al, 
2014). Furthermore, recent studies indicate the effects of urban heat have disproportionate impacts among 
marginalized and low-income communities (Hsu et. al 2021). Understanding the disproportionate impacts of 
the UHI effect on a community is crucial to identifying priority areas for cooling initiatives and mitigation 
strategies. 
 

https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6136a6.htm
https://www-ncbi-nlm-nih-gov.ezproxy.lib.utexas.edu/pmc/articles/PMC4107471/
https://www-ncbi-nlm-nih-gov.ezproxy.lib.utexas.edu/pmc/articles/PMC4107471/
https://www-nature-com.ezproxy.lib.utexas.edu/articles/s41467-021-22799-5.pdf
https://www-nature-com.ezproxy.lib.utexas.edu/articles/s41467-021-22799-5.pdf
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Fairfax County, VA, covers 406 square miles (1,010 km2) in the northern Virginia greater Washington, DC 
metropolitan region. The county surrounds Fairfax City, which is a separate jurisdiction. The county borders 
the Potomac River in the Southeast, as seen below in Figure 1. With about 1.12 million individuals and a 
median household income of $128,374, it is the most populated and among the most affluent counties in the 
state (Han and Khaja, 2021). 
 

 
Figure 1. Study Area of Fairfax County, Virginia and reference areas:  

(A) Prince William Forest Park and (B) Marine Corps Base Quantico in Prince William County, VA.,  
(C) Glatfelter Easement and adjacent areas in St. Charles County, MD.  

(County boundary source: https://www.fairfaxcounty.gov/maps/, ESRI Light Canvas base map) 
 

The InVEST urban cooling model has been employed in previous research studies to model the impacts of 
urban development practices on UHI, target hotspots for mitigation, and to measure the cooling effects of 
heat-mitigation efforts (Kadaverugu et al. 2020). Bosch et al. used InVEST to show the correlation between 
land use and heat wave intensity in a Swiss urban environment (2021). Their study found that the InVEST 
tool outperformed previous climate assessment methods by incorporating the physical characteristics of the 
land and atmosphere, resulting in more accurate and dynamic predictive models. 
 
2.2 Project Partners  
This team partnered with the Fairfax County Office of Environmental and Energy Coordination (OEEC) on 
this project. The OEEC is interested in investigating UHI effects within the county, identifying the hottest 
spots, most vulnerable populations, and determining effective cooling strategies and priority areas for heat 
mitigation. Motivation to investigate UHI has also been underscored by public support for understanding 
how populations within the county may be disproportionately vulnerable to urban heat. Informed by the 
InVEST urban cooling model output, the OEEC will determine how factors such as increased tree canopy 
cover and albedo can be leveraged to improve the heat mitigation capacity of an area. The strategies informed 
by this study will be incorporated into the Resilient Fairfax: Climate Adaptation and Resilience Plan, to be 
completed in 2022. 
 

3. Methodology 
3.1 Data Acquisition  
The team retrieved Landsat 8 TIRS Provisional Surface Temperature and OLI Surface Reflectance products 
included in the U.S. Landsat Analysis Ready Data (ARD) bundle for Fairfax County and surrounding areas 
for the months of June through August of 2013 to 2020 from the US Geological Survey Earth Explorer 
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website. The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) 
data from the USGS Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) and 
NASA EarthData portals provided the nighttime land surface temperature (LST) and evapotranspiration data, 
respectively, for the months of June through August of 2018 to 2021(Hook 2019). Table 1 contains the list of 
satellite platforms and sensors that produced the data. 
 
Table 1.  
NASA Earth Observations used in this study.  

Platform Sensor Parameter Date Range Resolution 
Landsat 8 Operational Land 

Imager (OLI) 
Albedo 2013 - 2020 (June 

through August) 
30 m 

Landsat 8 Thermal Infrared Sensor 
(TIRS) 

Daytime Land 
Surface 
Temperature (LST) 

2013 - 2020 (June 
through August) 

100 m 

International 
Space Station 
(ISS) 

ECOsystem Spaceborne 
Thermal Radiometer 
Experiment 
(ECOSTRESS) 

Evapotranspiration 
Nighttime LST 

2018 – 2021 (June 
through August) 

70 m 

 
The OEEC provided the county land use land cover (LULC) data as well as the canopy cover and building 
footprints shapefiles, all necessary inputs for the InVEST model. The team used the 2016 National Land 
Cover Database (NLCD) for the adjacent areas inside and around the county. The project partners also 
provided the socio-economic-health data based on the American Community Survey (ACS) 2014 - 2018 for 
the heat vulnerability analysis. 
 
3.2 Data Processing for LST Imagery 
3.2.1 Daytime LST 
The team first removed any pixels from the daytime LST data that were tainted by the presence of clouds or 
cloud shadows. The Landsat Collection 1 Level-1 Quality Assessment band contains information on the 
usability of pixels within a Landsat scene, allowing users to apply filters on pixels containing clouds, water, or 
snow. The team developed a Python script which utilized the Quality Assessment raster provided within each 
LST product to mask pixels values classified as cloud, high-confidence cloud, medium-confidence cloud, 
high-confidence cirrus, and cloud-shadow. The team then used the Cell Statistics tool in QGIS to calculate a 
mean value for each pixel across the 82 cloud-masked daytime LST images, outputting a mean daytime LST 
raster that the team used to derive the daytime LST anomalies. 
 
The Landsat 8 Provisional Surface Temperature Product is in units of degrees Kelvin with a scale factor of 
0.1, so the team used Eq. (1) in QGIS along with the Raster Calculator tool to convert the units into degrees 
Fahrenheit. 
 

 𝑭𝒂𝒉𝒓𝒆𝒏𝒉𝒆𝒊𝒕 (°𝑭)  =  𝑲𝒆𝒍𝒗𝒊𝒏 ∗  𝟎. 𝟏 ∗  𝟏. 𝟖 −  𝟒𝟓𝟗. 𝟔𝟕 Eq. (1) 

 
3.2.2 Nighttime LST 
The team filtered the downloaded ECO2LSTEv001 dataset and filtered the images for nighttime hours and 
the hot months using R code built in RStudio to process only the images acquired for times between 9:00 
p.m. and 5:00 a.m. local time, between June 1st and August 31st each year of the study period. The team then 
used the quality bands in the ECO2LSTEv001 dataset to identify clouded or low-quality pixels in the LST 
dataset and to remove the data from those pixels, such that measurements of cloud temperature do not 
contaminate the calculations for mean LST. Specifically, the team applied a filter to omit LST pixels flagged 
with “cloud detected” or “bad/missing data” in the quality control band. Following masking and filtering, the 
team used the r.series tool in QGIS to calculate mean values for each pixel from the 29 resulting images to 
produce a raster layer of mean nighttime LST. The team used shapefiles for Fairfax County and the reference 
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areas to clip that mean nighttime LST layer and produce mean nighttime LST values for the study area and 
reference areas. The team converted the acquired values to Kelvin by multiplying each by a factor of 0.02.  
 
3.3 Data Processing for Daytime and Nighttime LST Anomalies 
To evaluate the UHI effect, the team needed to compare the county temperatures to those of undeveloped 
forested areas.  The team selected Prince William Forest Park and the Marine Corps Base Quantico in Prince 
William County, VA., and the Glatfelter Easement and adjacent areas in St. Charles County, MD, as reference 
areas, based on these criteria: altitude and latitude similarity, positioned away from major water bodies, and 
within 50 miles of the county (Figure 1). 
 
The team processed LST of the reference areas according to the process outlined in the earlier sections, and 
further calculated the mean reference temperatures by finding the average daytime and nighttime 
temperatures across the study period for the reference areas. The team derived the temperature anomaly by 
subtracting the mean reference temperature from each pixel of the daytime and nighttime LST products. In 
addition to calculating the LST anomaly using the reference areas, the team mapped the heat anomalies as a 
difference from the Fairfax County mean temperature. In this exercise, the team calculated a single mean 
value from the Fairfax County daytime LST raster and subtracted that value from each pixel within the 
daytime LST map. The resulting map shows the average temperature difference between a given pixel and the 
spatial mean daytime temperature of Fairfax County. 
 
In nighttime LST anomaly map generation, the team aimed to reduce unnecessary influence of day-to-day 
temperature variation on the final anomaly products by removing the daily county mean from each individual 
scene. The team clipped each scene to the county and reference area shapefiles immediately following 
masking, prior to generating average maps. The team calculated the mean LST value for each clipped scene 
and subtracted it from each pixel, resulting in anomaly maps for each acquisition day. The team averaged each 
of those daily anomaly maps to generate mean nighttime LST anomaly maps for the county and reference 
areas. The resulting map, generated from data clipped to the county, represented the nighttime LST anomaly 
with respect to the county, and to generate nighttime LST anomaly with respect to the reference areas, the 
team calculated mean values from the county and reference areas using the overall mean LST map (described 
in the preceding paragraph) and subtracted the difference from the county LST anomaly map. 
 
3.4 Heat Vulnerability Analysis 
The team created a heat exposure index and a heat sensitivity index for each census tract and used these to 
produce a heat vulnerability index to display the most heat vulnerable regions throughout the county. To 
calculate heat exposure, the team used Eq. 2, where mDLST is mean daytime LST and mNLST is mean 
nighttime LST. Literature suggests that nighttime temperatures are better predictors of heat-related health 
consequences (Murage et al., 2017) and consequently the nighttime LST has a greater influence on the 
exposure index. Following calculation of an exposure raster, the team used zonal statistics to calculate mean 
exposure for each census tract, then reclassified those exposures to index values between one and five using 
natural breaks.  
 
 

𝑬𝒙𝒑𝒐𝒔𝒖𝒓𝒆 =
𝒎𝑫𝑳𝑺𝑻 ∗ 𝟎. 𝟓 + 𝒎𝑵𝑳𝑺𝑻

𝟏. 𝟓
 

Eq. (2) 

 
The project partners provided the team with 15 socio-economic datasets they believed were pertinent for 
identifying heat-sensitive populations. They already had ranked each individual variable into 5 classes using 
natural breaks and given a score 1 - 5, with 5 being the most sensitive. The team collected 3 additional 
datasets from the ACS and conducted the same scoring methodology as the county. The team grouped the 
variables into four sub-indices: income, health, demographics, and housing, which can be seen in Table A1. 
Then, the team averaged the scores of all the variables within each sub-index to calculate an overall score per 
census tract for that sub-index. To get an overall sensitivity score for each census tract, the team averaged all 
the sub-indices and used natural breaks to rank the scores 1 - 5. 
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The team created the heat vulnerability index by compounding the heat exposure index score with the heat 
sensitivity index score, derived by Eq. (3). 
 

 𝑯𝒆𝒂𝒕 𝑽𝒖𝒍𝒏𝒆𝒓𝒂𝒃𝒊𝒍𝒊𝒕𝒚 = 𝑯𝒆𝒂𝒕 𝑬𝒙𝒑𝒐𝒔𝒖𝒓𝒆 ∗ 𝑯𝒆𝒂𝒕 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 Eq. (3) 

 
As an alternate methodology, the team attempted to calculate the vulnerability index by conducting a 
Principal Component Analysis (PCA) of the heat sensitivity variables. PCA is a statistical procedure which 
reduces the dimensionality of a dataset while retaining as much of the variance within the dataset as possible, 
achieved through the creation of a new set of uncorrelated variables, the principal components. However, the 
team had to throw out the first principal component due to its contradicting correlations, greatly reducing the 
variance explained by the chosen components. For this reason, the team decided not to pursue this 
methodology for the vulnerability analysis. 
 
3.5 Data Processing for the InVEST Model 
3.5.1 Land Use Land Cover (LULC)  
The InVEST model considers the influence of large green areas up to a 2 km distance when calculating heat 
mitigation capacity.  Since the Fairfax County LULC GIS data did not include data for its roads, Fairfax City, 
or areas bordering the county, the team adapted the 2016 National Land Cover Database (NLCD) to fill in 
the missing information. The NLCD classifications differed from the categories used by Fairfax County and 
based on judgment, the team reclassified the NLCD classifications to match the Fairfax County-provided 
layer. Lastly, they added two land use categories of high and low intensity road.  
 
The team used the combined raster as the foundation for the biophysical table required by InVEST, where 
they assigned values for shade, albedo, crop coefficient, and building intensity for each unique LULC 
classification. See Figure 2 below for the Fairfax County LULC categories map utilized by this study. 
 

 
Figure 1. Fairfax County Land Use Land Cover categories adapted for the study. 

 
3.5.2 Building Intensity 
Accounting for built infrastructure is crucial to understanding nighttime temperatures as structures absorb 
solar radiation throughout the day and release this stored energy in the evening. The building footprint vector 
file covering both Fairfax County and city contained building footprint area (Ba) and respective relative 
height. To determine the average ceiling height for each building, the team used an approximation of 7.5 feet 
in residential buildings and 10 feet in commercial buildings as described in Chun and Guldmann (2021). The 
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team divided relative building height by its respective building ceiling height approximation to estimate the 
numbers of floors in the building (F), rounding to the nearest whole number and replacing zeros with a value 
of one. The team then multiplied the number of floors by the building footprint to determine total building 
floor area. The team calculated building intensity for each LULC for the biophysical table as a normalized 
value between 0 and 1 by dividing the total building floor area across all buildings in each LULC by the 
cumulative area of the corresponding LULC, according to Eq. (4).  
 

 𝐵𝐼 (𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠) =  𝛴(𝐵𝑎 × 𝐹) ÷ 𝐿𝑎 Eq. (4) 
 
where BI is the building intensity for each LULC class, Ba is the building footprint for each LULC class (m2), 
F is number of floors, and La is the land area for each LULC class (m2). The team then spatially joined 
building intensity results to respective LULC pixel to provide a set of values for use in the biophysical table. 
 
3.5.3 Shade 
The team calculated shade starting with a vector shapefile depicting canopy coverage in a binary form 
(tree/no tree), which was converted into a raster and clipped to the study area. The canopy cover across 
Fairfax County is shown in Figure B1. Then, the team created a fishnet grid (with each grid square ~30 m x 30 
m) encompassing the study area, serving as a zone field to compute percent canopy coverage for each grid 
square. The team combined this new gridded area containing county’s percent canopy cover to the National 
Land Use Cover 2016 US Forest Service Tree Canopy Cover using the union tool to create a seamless layer 
for the study area, encompassing both the county and reference areas. Canopy coverage was then calculated 
for each land use area using a 2 km buffer around the county to deliver a more accurate representation of 
canopy coverage at the county boundaries.  

 
3.5.4 Albedo 
Albedo represents the proportion of solar radiation reflected by a surface. High albedos closer to 1 are typical 
for snow and deserts, which reflect large fractions of the sunlight while albedos close to zero are typical of 
oceans and lakes. Low albedos for vegetation indicate that the surfaces absorb most of the incoming energy, 
temporarily “sinking” the heat and improving cooling capacity (Coakley, 2003). Consequently, the InVEST 
model includes the average albedo for each land use category in its calculations of heat mitigation capacity. 
The team calculated the mean albedo from the surface reflectance data of the blue, green, red, near infrared 
(NIR), short-wave infrared (SWIR1 and SWIR2) bands with the “Olmedo weighted coefficients” (Olmedo 
et.al, 2016) using Eq. (5). The resulting map of albedo across Fairfax County is shown in Figure B2.  

 

 
𝐴𝑙𝑏𝑒𝑑𝑜 = 𝐵𝑙𝑢𝑒 ∗ 0.246 + 𝐺𝑟𝑒𝑒𝑛 ∗ 0.146 + 𝑅𝑒𝑑 ∗ 0.191 + 𝑁𝐼𝑅 ∗ 0.304 + 𝑆𝑊𝐼𝑅1

∗ 0.105 + 𝑆𝐼𝑅2 ∗ 0.008 

 

Eq. (5) 

3.5.5 Evapotranspiration (ET) 
ECOSTRESS Evapotranspiration (ET) data included a quality assessment (QA) product, assigning raster 
pixels values based on their cloud cover levels. This data set included layers titled ETDaily, measuring the 
daily latent heat flux of Fairfax County over our study period. The team used a model within ArcGIS Pro to 
convert the units of this layer into the format required by the InVEST model [mm day-1] using Eq. (6): 
 
 

𝐸𝑇𝐴 [𝑚𝑚 𝑑𝑎𝑦−1] =  𝐸𝑇𝐵 [𝑊 𝑚−2] ∗  0.0864
[𝑀𝐽 𝑑𝑎𝑦−1]

[𝑊]
∗  0.408

[𝑚𝑚 𝑑𝑎𝑦−1]

[ 𝑀𝐽 𝑑𝑎𝑦−1𝑚−2]
  Eq. (6) 

 
ETA is the unit-converted numerical rate of ET used in the InVEST model [mm day-1] and ETB is the ET 

value before conversion [W ⋅ m-2]. The team used a Python script to remove all clouded pixels from the ET 
raster by using the QA flags and then averaged all of the images using the Cell Statistics tool. This produced 
the median ET image needed to run the InVEST model, as shown in Figure B3. Due to irregularities present 
within the ETDaily minimum values, the team used the median rather than mean to represent the data and 
reduce the effect of outliers. Since ECOSTRESS does not provide ET data over water, the team filled those 
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pixels with the median ET value of the image (74,131), using the ‘is null’ tool in ArcGIS Pro to find pixels 
with no data value and the 'con' tool to set a new value.  
 
3.5.6 Crop Coefficient (Kc) 
The crop coefficient is used by the InVEST model to determine the actual evapotranspiration from the 
potential evapotranspiration. The ECOSTRESS evapotranspiration data utilized by the team is already 
estimated as actual evapotranspiration, and as such, the crop coefficient is not necessary. For this reason, the 
team used a constant Kc value of 1 for each LULC class within the biophysical table, as to not interfere with 
the actual evapotranspiration values derived from ECOSTRESS. 
 
3.5.7 Mitigation Scenario 
The team developed a mitigation scenario of altering the canopy cover amounts in the biophysical table to 
estimate impacts of potential shade increase across the county. The amount of canopy cover increase was 
chosen arbitrarily and does not represent the team’s opinions of possible policy interventions in Fairfax 
County. The impetus behind this exercise was to test the InVEST model’s capability to project hypothetical 
changes and their impacts on heat mitigation. The following land use cover categories were increased: 
Industrial light-heavy (20%); High-density residential, Medium-density residential, Commercial (15%); Public 
& Utilities (10%); Low-intensity-road (8%); Agricultural & Low-density residential (5%).  
 

4. Results & Discussion 
4.1 Analysis of Results 
4.1.1 Heat Anomalies  
Using LST data from Landsat 8 and ECOSTRESS, the team produced daytime and nighttime heat anomaly 
maps. The team calculated temperature anomalies with respect to both the county mean LST and the 
reference area mean LST. The various heat anomaly maps are shown in Figure 3. Figures 3a and 3b show the 
daytime anomalies in relation to the reference area and county means respectively, while Figures 3c and 3d 
show the same relationships for nighttime anomalies. Temperature anomalies of 37°F (daytime) and 10°F 
(nighttime) over the county mean were observed, meanwhile in respect to the reference area mean, there were 
temperature anomalies of 47°F (daytime) and 14°F (nighttime). 
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Figure 3. Fairfax County heat anomaly maps, showing daytime anomalies in relation to reference (a) and 

county (b) means, and nighttime anomalies in relation to reference (c) and county (d) means.  
 
With consideration toward the physiology of Fairfax County, the team evaluated correlation of daytime LST 
with two variables: canopy cover and impervious surface cover. The daytime mean LST temperature of 
Fairfax County is shown in Figure 4. The team calculated mean daytime LST, canopy cover, and impervious 
surface cover by census block group and evaluated the correlations. Figure 4a shows the relationships between 
canopy cover and mean daytime LST and Figure 4b. shows the relationships between impervious surface cover 
and mean daytime LST. The values for daytime mean LST, canopy cover, and impervious surface cover are 
recorded by block group GEOID in the supplementary data documentation.  
 

 
Figure 4. Plots showing correlation between block group canopy cover and daytime mean LST (°F) (a), and 

correlation between block group impervious surface coverage and daytime mean LST (°F) (b) 
 
The evident relationship prompted significance testing, and the Pearson correlation coefficients demonstrated 
a strong relationship in each of the two variable pairs, with values of -0.877 for canopy cover and LST, and 
0.893 for impervious surface cover and LST. The results suggest a strong and approximately linear 
relationship in both pairs over the range studied, with the correlation being negative between canopy cover 
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and LST, and positive between impervious surface cover and LST. The patterns indicate that areas with high 
impervious surface cover and low canopy cover are expected to have the highest mean LST. Inspection of the 
daytime heat anomaly maps reveals that the most urbanized areas, characterized by extensive impervious 
surfaces and relatively low tree cover, did exhibit some of the highest mean observed temperatures in this 
study.  
 
4.1.2 InVEST HMI and Air Temperature 
The team used the InVEST urban cooling model to generate an approximate output of the Heat Mitigation 
Index (HMI) for Fairfax County. HMI is a unitless value approximation of an areas ability to mitigate heat or 
cool itself. The InVEST model considers values of shade, evapotranspiration, albedo, and distance from 
cooling islands (e.g., parks) to generate its values ranging from 0 (no ability to mitigate heat) to 1 (ability to 
cool completely). The team ran two models to account for the daytime HMI as well as the nighttime HMI. 
The nighttime conditions are calculated slightly different from the daytime as it considers building intensity 
within each land classification as its main determinate factor.  
 
The team found that based on current conditions within the area the average daytime HMI for Fairfax was 
0.42. Figure 5a shows the distribution of HMI values across the county. Additionally, the team found that the 
average nighttime HMI was 0.82. Figure 5b below illustrates the nighttime HMI values across the study area. 
More detailed analysis revealed that more urbanized areas had lower HMI values. The land classes with the 
two lowest HMI values were Commercial and High-Intensity Road, 0.244 and 0.273 respectively. 
Contrastingly the land classes with the two highest were Recreation and Open land, not forested or developed 
with average HMI values of 0.542 and 0.506 respectively.  

 

 
Figure 5. Fairfax County daytime HMI (a) and nighttime HMI (b) on a scale from 0 (red) to 1 (blue). 

 
Along with the ability to model a HMI index for the county, the InVEST model generated maps of county air 
temperature. It was found that the county average daytime air temperature was 106.7 °F and the county 
average nighttime air temperature was 78.6°F. Further analysis showed that the land classes with the two 
highest average daytime temperatures were Commercial and High-density Residential, 109.2°F and 108.8°F 
each. While the two land cover classes with the lowest average daytime temperatures were Open land, not 
forested or developed and Recreation, having values of 105.7°F and 103.8°F respectively. Commercial areas 
stayed consistently hot in the nighttime, having the highest average nighttime temperature at 79.9°F. While 
Open Water had the lowest average nighttime temperature of 77.1°F. 
 
4.1.3 InVEST Mitigation  
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The InVEST Urban Cooling model offers a powerful opportunity to alter conditions in the biophysical table 
to project the impacts of hypothetical changes to canopy cover, albedo, or building intensity. The team 
determined that a mitigation scenario of increasing canopy cover would be the most impactful variable to 
alter. This was due to preliminary analysis showing little impact from Albedo change in addition to past 
projects finding albedo alternations resulting in little to no change (LaJoie et al. 2021).  
 
The team ran the InVEST model for daytime conditions altering only canopy cover and keeping all other 
factors consistent with the baseline. They found that a collective 4.5% increase in canopy cover across the 
county could result in a temperature reduction of up to 2.4°F in some areas. More detailed analysis revealed 
that the public land cover class experienced the largest area temperature reduction of 1.6°F.  
 
4.1.4 Vulnerability 
Results from the heat vulnerability analysis aid in determining which regions within Fairfax County are both 
more sensitive and have higher exposure to heat than other regions. The Heat Exposure Index, displayed in 
Figure 6a, illustrates similar patterns to the heat anomaly maps, with more urbanized census tracts exhibiting 
hotter temperatures. Areas most impacted by high heat exposure included Tyson's Corner, Merrifield, 
Centreville, Springfield, Reston, Huntington, and Fair Lakes. Census tract 51059491303 had the highest heat 
exposure with a weighted mean temperature of 86.3 °F (Table A2). Areas with the lowest heat exposure 
scores included regions in South Central and North Central Fairfax County. 
 
The Heat Sensitivity Index (Figure 6b) shows a somewhat different pattern than that of the Heat Exposure 
Index; some areas that had high exposure scores had low sensitivity scores and vice versa. However, some of 
the hottest areas did coincide with the most sensitive areas, such as Springfield. Some of the other most heat 
sensitive neighborhoods included Annandale, Hybla Valley, Seven Corner's and Bailey's Crossroads. A list of 
the top 10 heat sensitive tracts can be found in Table A3, with census tract 51059451400 scoring as the most 
heat sensitive. Some of the less sensitive areas include Oak Hill and Western-most Fairfax County. 
 
The Heat Vulnerability Index (Figure 6c), as a result of heat sensitivity and heat exposure, illustrates the 
distribution of vulnerable regions within the county. The highest heat vulnerability scores were found in the 
areas of Springfield, Seven Corner's, Bailey's Crossroads, and Huntington. Table A4 displays the top 10 most 
vulnerable census tracts. 
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Figure 6. Heat Exposure Index with score of 5 being most exposed (a), Heat Sensitivity Index with score of 5 
being most sensitive (b), and Heat Vulnerability Index with score of 5 being most vulnerable (c). The team 

divided the actual Heat Vulnerability Index values by 5 (Table A4) so the scale would align with other indices 
for visualization purposes.  

 
As previously mentioned, the team decided not to conduct the heat vulnerability analysis using results from 
the PCA. This was because the first principal component, which retained 33% of the variance within the 
dataset, was thrown out. Variables that weighed heavily upon this component included old age with a positive 
loading factor, and poverty, with a negative loading factor. In other words, within Fairfax County, an increase 
in age is associated with a decrease in poverty. This complicated interpretation of the results because old age 
is associated with higher heat sensitivity while more wealth is associated with lower heat sensitivity. The team 
was unsure whether higher values in component one should be associated with high or low sensitivity risk, 
thus the reasoning for throwing out the first component and retaining components two through five instead. 
However, in doing so the variance of the dataset was greatly reduced, and the team decided this methodology 
would not produce an accurate depiction of heat vulnerability within the county. 
 
4.2 Future Work  
Future work could refine the heat vulnerability index by further analyzing the public’s daily routine, which 
could increase the accuracy of the heat sensitivity index and discern the effect of daytime or nighttime heat in 
relation to the most frequented locations throughout the day. One limitation of the vulnerability analysis was 
that the grouping of variables into larger sub-indices was subjective and somewhat arbitrary. Future work 
could compare results from our heat vulnerability index obtained from subjectively grouping the component 
variables with an index produced using PCA. Research could also be conducted to determine whether some 
variables should be weighted more than others when it comes to determining heat vulnerability. In addition, 



12 
 

the city’s development patterns, and zoning practices could be analyzed to determine the influence of past 
planning decisions on of the presence of current UHI. 
 
In order to improve the results of the InVEST model, future work could refine input datasets. Certain rasters 
of the input datasets had ‘NoData’ pixels that the team had to estimate for. The team needed to revise some 
InVEST results as well to preserve the accuracy of the product. Possible future work includes collecting 
additional datasets to calculate the true rate of evapotranspiration over water bodies and reassessing the 
representation of roads in InVEST input layers. The InVEST Model flagged roads as areas with very high 
cooling capacity when in reality they retain heat during the day and slowly release it at night. Therefore, the 
team had to remove all InVEST outputs on roads to correct this. Future work could also include the 
collection of additional data to generate an Energy Savings Table, allowing for the financial impact of UHI as 
well as potential savings due to heat mitigation to be an end product. 
 
Lastly, future work could reassess the study’s methodology and improve the accuracy of the overall results by 
using an algorithm that references the ECOSTRESS tiles properly before processing. These tiles have slight 
geo-positional variances that reduced the accuracy of the data when averaging multiple images. Also, surface 
temperature results from the provisional data set could be compared with results obtained from downloading 
and processing the data with a Google Earth Engine script. 
 

5. Conclusions 
Some areas within Fairfax County experienced day and nighttime temperatures similar to the temperatures of 
rural reference areas. However, like many urban jurisdictions, our study found the county had urban heat 
islands with high heat anomalies and temperatures upwards of 40˚F above that of the reference areas and the 
county. These hotspots corresponded to areas of high building intensity in commercial, business, industrial, 
and residential zones as well as along highways. 
 
Heat sensitive populations are more vulnerable when working and living in areas of high heat exposure 
during the day and returning home to an area of high nighttime temperature in the evening. The combination 
of sustained high temperatures during the day and not being able to cool off at night is dangerous to human 
health. Sustained heat stress does not allow the body to rest and exacerbates medical conditions. Therefore, 
addressing the effects of UHI on public health requires heat mitigation initiatives to focus on residential areas, 
and not solely regions with the highest heat exposure.  
 
The HMI results from the InVEST model followed a similar pattern of spatial distribution as the heat 
anomalies. Areas in the county with a high density of impervious surfaces absorb more heat and have less tree 
canopy, resulting in a low heat mitigation capacity. Additionally, urbanized areas next to parks and forested 
land experience lower temperatures and a higher heat mitigation capacity. 
 
The InVEST model also suggested that efforts to increase albedo have relatively little effect in reducing 
temperatures around the county. Other studies have noticed similar results. According to the InVEST model, 
increasing tree canopy is a more effective heat mitigation strategy. If Fairfax County increased tree canopy by 
4.5%, the temperature could be reduced by 2.4˚F in some areas.  
 
It is a goal of the Fairfax County OEEC to use these results to evaluate the effectiveness of the cooling center 
locations.  The heat vulnerability map with cooling center locations overlayed indicated that not all areas of 
high heat vulnerability are within one mile of a cooling center.  However, the areas not within one mile may 
not be highly populated.  Therefore, further analysis is needed to assess the effectiveness of current cooling 
center locations. 
 
The OEEC will be able to utilize the results of this study within their Resilient Fairfax: Climate Adaptation 
and Resilience Plan. The vulnerability analysis will help inform partners of areas within Fairfax County that 
should be prioritized for mitigation efforts, allowing the county to visualize the distribution of populations 
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that are most sensitive, exposed, and vulnerable to heat. Results from the InVEST model will help partners 
understand the effects of different land cover types on heat mitigation capacity and the cooling potential of 
planting more trees across the county. 
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7. Glossary 
Albedo - the fraction of light reflected by a surface 
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 

biological systems over space and time 
ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) - satellite 

mission that aims to measure how the terrestrial biosphere changes in response to environmental 
changes such as water availability.   

Evapotranspiration – the sum of evaporation of water from land and other surfaces and through 
transpiration by plants 

Heat Anomaly - temperatures higher than a reference temperature 
Heat Exposure – the magnitude of heat energy in a given area 
Heat Mitigation Index (HMI) - value approximation of an areas ability to mitigate heat or cool itself 
Heat Sensitivity Index – aggregate score of health, economic, social and demographic variables that make 

an individual experience more severe consequences if exposed to heat.  
Heat Vulnerability Index – numerical score from the product of heat sensitivity and heat exposure 
Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) - a suite of models used to map 

and value the goods and services from nature that benefit human life 
Land Surface Temperature (LST) - temperature of the surface of the Earth 
Operational Land Imager (OLI) - sensor aboard the Landsat 8 satellite that measure visible, near infrared 

and shortwave infrared wavelengths 
Thermal Infrared Sensor (TIRS) - sensor aboard the Landsat 8 satellite that measures both Earth’s surface 

temperature and atmospheric temperature 
Urban Heat Island (UHI) Effect – difference in temperature between and urban area and an undeveloped 

or more natural forested area 
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9. Appendices 
Appendix A: Additional inputs and findings from vulnerability study.  

 
Table A1. 
Overview of sensitivity index sub-indices and their associated American Community Survey (ACS) socio-economic variables. 

Sensitivity Factor ACS Datasets 

Income Below Poverty Line 

Median Household Income 

Severely Burdened Renter 

No vehicle 

Health Population without health insurance 

Population with a disability 

Adults with hypertension 

Adults with COPD 

Adults with asthma 

Adults with diabetes 

Adults reported as obese 

Demographics Age 65 & over 

Age 5 & under 

Population that speaks English "less than well" 

Housing Overcrowding 

Populations in nursing homes 

Populations incarcerated 

Mobile Homes 
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Table A2.  
Heat Exposure Score table displaying top 10 scoring census tracts. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Table A3.  
Heat Sensitivity Score table displaying top 10 highest scoring (most sensitive) tracts. 

GEOID Income 

Score 

Demographic 

Score 

Health Score Housing 

Score 

Sensitivity 

Score 

51059451400 4.500 4.333 3.500 1.000 5 

51059452802 4.500 3.000 4.333 1.333 5 

51059451502 3.750 3.667 4.000 1.667 5 

51059421500 4.000 3.000 3.667 2.333 5 

51059421600 4.750 3.000 4.167 1.000 5 

51059415500 4.000 3.000 4.167 1.667 5 

51059451501 4.750 3.667 3.333 1.000 5 

51059421701 4.250 3.333 4.000 1.000 5 

51059421400 4.250 3.333 3.833 1.000 5 

GEOID Mean 

Temperature 

(°F) 

Exposure 

Score 

51059491303 86.3 5 

51059420400 85.9 5 

51059482203 85.6 5 

51059491202 85.4 5 

51059452802 85.4 5 

51059440201 85.3 5 

51059421002 85.1 5 

51059420503 85.0 5 

51059481101 85.0 5 

51059480203 84.9 5 
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51059431600 4.250 3.000 3.500 1.667 5 

 
 
Table A4.  
Heat Vulnerability Score table displaying the top 10 scoring (most vulnerable) tracts. 

GEOID Exposure Score Sensitivity 

Score 

Vulnerability 

Score 

51059451400 5 5 25 

51059420501 5 5 25 

51059451502 5 5 25 

51059452802 5 5 25 

51059415401 4 5 20 

51059416000 4 5 20 

51059421400 4 5 20 

51059421500 4 5 20 

51059421600 4 5 20 

51059421701 4 5 20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



19 
 

 
 
 
 

 
 

Appendix B: Auxiliary Maps Used in Calculations 
 

 
Figure B1. Percent Tree Canopy Cover 

 

 
Figure B2. Average Albedo 
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Figure B3. Evapotranspiration 

 

 
Figure B4. Average Daytime LST 
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