

REPORT OF

SUBSURFACE EXPLORATION AND GEOTECHNICAL ENGINEERING ANALYSIS

NORTH HILL PROPERTY MHP ALEXANDRIA, FAIRFAX COUNTY, VIRGINIA

FOR

GREENHORNE & O'MARA, INC.

JANUARY 27, 2010

"Setting the Standard for Service"

January 27, 2010

Mr. Cody Smith, P.E. Greenhorne & O'Mara, Inc. 3635 Concorde Parkway, Suite 300 Chantilly, Virginia 20151

ECS Job No. 14444

Reference: Report of Subsurface Exploration and Geotechnical Engineering Analysis North Hill Property MHP Alexandria, Fairfax County, Virginia

Dear Mr. Smith:

ECS Mid-Atlantic, LLC, is pleased to present this report for the above-referenced project. Our services were provided in accordance with our proposal (No. 29409, dated April 8, 2008 and revised April 14, 2008), which was authorized by Mr. Gatusso of G&O on April 28, 2009. Additional services were performed in accordance with a supplement request (No. 29409-Supp, dated June 16, 2009 and revised on July 7, 2009), which was authorized by Mr. Armstrong of FCH&RA via email on July 21, 2009.

This report includes a review of the proposed site development, a review of site and subsurface conditions, and our recommendations, including the design of stability-enhancing pile walls, The appendices include a boring location plan, pile wall profiles, test boring records, and the results of laboratory tests conducted.

Development of detailed project-specific specifications for construction of stability-enhancing pile walls is not included in our scope of services. We have included basic specifications to be considered by the G&O's or the County's construction engineers and contract managers.

It is noted that Fairfax County requires that all earthwork, grading, and pile and foundation installations be observed by the Geotechnical Engineer of Record on a full-time basis for sites having problem soils, such as this site. Based on our familiarity with the site and the intent of the design, we recommend that ECS be retained to provide these services.

If you have any questions with regard to the information and recommendations contained in this report, or if we may be of further service to you during the planning and/or construction phases of this project, please do not hesitate to contact the undersigned.

Respectfully, ECS MID-ATLANTIC, LLC

sayant Jomer

Margaret E. Tomeo, E.I.T. **Project Manager**

CHRISTOPHER GIESI

Lic. No. 12025

J. Christopher Giese, Chief Engineer Vice President

MET/met I:\Geotechnical\{eProjects}\14400-14499\01-14444\e-Report Prep\14444rrrse.doc

REPORT

PROJECT

Subsurface Exploration and Geotechnical Engineering Analysis North Hill Property MHP Alexandria, Fairfax County, Virginia

CLIENT

Greenhorne & O'Mara, Inc. 3635 Concorde Parkway Suite 300 Chantilly, Virginia 20151

PROJECT	No. 14444
DATE	January 27, 2010

TABLE OF CONTENTS

	PAGE
PROJECT OVERVIEW	2
Introduction Purpose and Scope of Work	2 3
EXPLORATION PROCEDURES	5
Subsurface Exploration Procedures Laboratory Testing Program	5 5
EXPLORATION RESULTS	6
Regional Geology Soil Conditions Groundwater Observations	6 6 7
ANALYSIS AND RECOMMENDATIONS	9
Slope Stability Analyses and Considerations Procedure and Design Slope Stability Analysis Pile Wall Recommendations Site Drainage Foundations Roadways	9 9 10 11 13 13 13
CONSTRUCTION RECOMMENDATIONS	15
Subgrade Preparation and Earthwork Operations Fill Placement Construction Dewatering Temporary and Permanent Slopes Closing	15 15 16 16 17
APPENDICES	18
Appendix A – Drawings Appendix B – Soil Test Borings	

Appendix B – Soil Test Borings Appendix C – Laboratory Test Results Appendix D – Calculations

PROJECT OVERVIEW

Introduction

This report presents the results of our subsurface explorations and geotechnical engineering analysis for the proposed North Hill Property Mobile Home Park in Fairfax County, Virginia.

In preparing this report, we have utilized information from our current and previous subsurface explorations. We have reviewed the proposed site plans, existing topographic information, and the previous preliminary report of subsurface exploration prepared by Law Engineering Associates of Virginia, dated September 9, 1981. We have previously transmitted a preliminary review of our initial exploration findings in the letter dated May 6, 2009.

The project will consist of the development of the 34-acre North Hill Property located in Hybla Valley along U.S. Route 1 in Fairfax County, Virginia. The Fairfax County Redevelopment and Housing Authority plans to develop the site with an approximately 11-acre mobile home park (R-MHP) that will be located in the southeast quadrant of the site. The remainder of the site will be converted to a park.

Based upon our review of the site plans, it appears that varying amounts of cutting and filling will be required to establish the design elevations shown on the grading plans for the final design option chosen. In general, the cuts and fills will be nominal, about 6.0 feet \pm , throughout the proposed development, except in the north area of the site. In this area 4(H) to 1(V) continuous cut slope will extend up to match existing grades.

Concrete pads will be constructed at finished grade levels for the mobile homes. Site development will include 24-foot wide roadways, utilities, and stormwater drainage systems.

In the park preserve area only minor structures, such as benches and picnic tables, are planned. No grading is planned but some brush removal will be required for foot trails.

This description of the proposed project is based on information provided to us by members of the design team. If any of this information is inaccurate or the design concept has changed, we recommend that we be contacted in order to provide additional or alternate recommendations that might be warranted.

We reviewed the aforementioned Law Engineering Associates of Virginia (LEA) information, and based on that review we advised G&O, in June of 2008, that the best area from a stability and earthwork standpoint to expand the mobile home park would be the southeast corner of the site. Further use of the LEA report was not relied upon for developing our recommendations as the borings were too shallow, and we were not able to develop any consistent subsurface profiles.

Site Location and Description

The North Hill Property is located along the east side of Richmond Highway (Route 1) in Alexandria, Fairfax County, Virginia. The 34-acre tract consists of the portions of the property directly to the north of Dart Drive and includes Poinsettia and Mums Drives. A Vicinity Map, which is presented on the Boring Location Diagram included in Appendix A of this report, shows the general location of this project.

The North Hill Property is bordered by residential housing developments to the east, west, and south, and the St. Louis School to the north. The southern area of the site is presently accessible by Dart Drive that connects to Richmond Highway.

The southeastern 11 acres of the North Hill property is currently zoned R-MHP for development as a mobile home park. The remainder of the site is lightly wooded with mostly deciduous trees of varying maturity and light underbrush. The northern 23 acres of the site was previously occupied by mobile homes. The homes were removed at a date not known to us. Since that time, the site has begun to revegetate naturally. The locations of the previous streets still remain discernable.

The property slopes significantly downward from the north to the south. Current site grades range from a high of approximately EL. +186 feet along the northernmost boundary, to a low of approximately EL. +80 feet throughout the southern portion of the proposed development where the mobile home pads are planned.

Evidence of on-going landslide activity was not observed at the time of our site visits. However, it is believed that the steep area located to the north of the planned expansion area represents an old scarp. See the Regional Geology review for additional details.

Purpose and Scope of Work

The purpose of this exploration was to explore the subsurface conditions at the site and to develop engineering recommendations to guide the design and construction of the project. We accomplished these purposes by performing the following scope of services:

- 1. Reviewing the geologic data and geotechnical reports prepared for nearby project sites by ECS, in addition to the preliminary report of subsurface exploration prepared by LEA (dated September 9, 1981)
- 2. Drilling additional borings
- 3. Performing laboratory tests on selected representative soil samples from the borings to evaluate pertinent engineering properties
- 4. Analyzing the field and laboratory data, from the subsurface exploration, to develop appropriate engineering recommendations
- 5. Preparing this geotechnical report of our findings and recommendations.

The conclusions and recommendations presented in this report are based on a total of sixty-two soil borings conducted at the site. Borings PB-1 through PB-5 were performed by LEA and were extended to a depth of 4.5 feet. Borings A-1 to A-11 and A-13 to A-40 were additionally performed by LEA in 1981 and were extended to depths ranging from 16 feet to 36.5 feet, or an elevation range of EL. +146.5 feet to EL. +40 feet. As noted previously, the recommendations and pile wall design are based on the borings performed by ECS.

The initial subsurface exploration conducted by ECS consisted of Borings ECS-1 through ECS-12. These borings were extended to depths of approximately 30 feet, 45 feet, and 60 feet, or elevations ranging from EL. +123 feet to EL. +55 feet. The supplemental subsurface exploration conducted by ECS in July 2009 consisted of Borings C-1 through C-4. These borings were extended to depths of approximately 60 feet, or elevations ranging from EL. +94 feet to EL. +41 feet. Additional supplemental borings D-1 and D-2 were conducted by ECS in September 2009. These borings were extended to depths of approximately 60 feet, or elevations of EL. +70 feet and EL. +82 feet, respectively. The subsurface explorations included split-spoon soil sampling, performing standard penetration tests (SPT) and groundwater level observations in the boreholes. Observation wells were established in seven borings.

A Boring Location Diagram and the test boring records are included in Appendix A. The Boring Location Diagram was developed from the site plan provided by your office. The elevations noted on the boring logs were interpolated from the site plan, which provided gradient contours at 2-foot intervals.

The number and general locations of the borings performed for the subsurface explorations were selected by ECS and located in the field for drilling purposes by representatives of ECS with the use of our Global Positioning System (GPS). The GPS layout was based on the boundary and topographic survey included on the site plans provided by the design team. The GPS unit for the boring layout is certified to sub-meter accuracy. Therefore, the boring locations in the field are considered to be accurate within approximately 3 feet of the locations shown on the Boring Location Diagram.

The assessment of the site for the presence of contaminants or other pollutants in the soil, groundwater, or bedrock is beyond the scope of our services.

Specifications for installation of pile walls have been prepared and have been submitted under separate cover. The specifications are to be used as a guide for preparing the contract documents.

EXPLORATION PROCEDURES

Subsurface Exploration Procedures

A total of six soil borings, referenced as C-1 through C-4, and D-1 and D-2, were drilled by ECS at the project site for the most recent explorations performed in July 2009 and September 2009. These borings were extended to depths on the order of 60 feet below the existing ground surface. A total of twelve soil borings, referenced as ECS-1 through ECS-12, were drilled by ECS at the project site for the previous exploration performed in March 2009. These borings were extended to depths on the order of 30 feet to 60 feet below the existing ground surface. After completion, each boring was backfilled with the auger spoils from each location.

Representative soil samples were obtained by means of the split-barrel sampling procedure in general accordance with ASTM Specification D-1586. Relatively undisturbed samples of the underlying cretaceous clays were obtained by pushing 3-inch (nominal) diameter Shelby tubes in general accordance with ASTM Specification D-1587. The undisturbed samples were obtained from Borings ECS-1 and ECS-5 for laboratory testing and use in the slope stability evaluation.

Field logs of the soils encountered in the borings were maintained by the drill crew. After recovery, each sample was removed from the sampler and visually. Representative portions of each sample were then sealed and brought to our laboratory in Chantilly, Virginia for further visual examination by a geotechnical engineer and laboratory testing.

Laboratory Testing Program

The laboratory testing program included visual classifications, moisture content, grain size analyses, direct shear tests, Proctor tests, California Bearing Ratio (CBR) testing, and Atterberg Limits tests. The laboratory test reports are included in Appendix C of this report.

To address long-term slope stability concerns, two drained, direct-shear tests were conducted in general accordance with EM 1110-2-1906 specifications on samples of over-consolidated cretaceous clay. The engineering strength parameters measured by the direct shear tests include both peak and residual strengths. The samples were pre-cut prior to testing. Utilizing residual strength parameters for cretaceous clays is the typical approach to long-term slope stability evaluations in the vicinity of the project site and the Washington Metro Area. However, it is also common to consider the strength of deep, intact cretaceous clay to be in the fully softened state, which is an intermediate strength. It is noted that our analyses only considered the residual strength values.

A geotechnical engineer classified each soil sample on the basis of texture and plasticity in accordance with the Unified Soil Classification System. The group symbols for each soil type are indicated in parentheses following the soil descriptions on the boring logs. A brief explanation of the Unified Soil Classification System is included in Appendix B with this report. The stratification lines designating the interfaces between earth materials on the boring logs and profiles are approximate as the transitions may be gradual rather than distinct.

EXPLORATION RESULTS

Regional Geology

The proposed project site is geologically located within the Atlantic Coastal Plain Physiographic Province of Northern Virginia. This Coastal Plain Province is characterized by a series of southeasterly dipping layers of relatively consolidated sandy clay deposits, with lesser amounts of gravel. These Coastal Plain deposits are estimated to be approximately 250 feet thick and are underlain by the eastward continuation of the crystalline rock of the Piedmont Physiographic Province.

In general, the higher elevations of the site area have few remnants of the Quaternary Age River Terrace deposits. The Quaternary Age Deposits are typically underlain by the Potomac Group sediments of the older Cretaceous Age. The Cretaceous Age Potomac Group deposits generally consist of interbedded, discontinuous sand and clay layers that generally slope to the southeast at roughly 50 to 80 feet per mile or approximately 0.5 to 0.8 degrees. The sand layers generally consist of fine to medium sand with variable amounts of clay and silt. In isolated areas, gravel can also be encountered. The occurrences of the sand layers are discontinuous, both laterally and vertically.

The clay layers of the Potomac Group are commonly referred to as "marine clay", although it is generally believed that they were deposited in a deltaic environment. These very stiff to hard clays are often moderately to highly over-consolidated and have a blocky structure. The clays vary in their composition and shear strength parameters. Fissures and slickensided surfaces can be present within these clays although they were not observed in the samples collected. In their natural state, these clays exhibit considerable strength, but after removal of overburden by erosion or grading, a significant reduction in shear strength occurs. This strength loss is attributed to creep and opening of fissures, allowing water movement along the openings which leads to a lower effective strength. The residual shear strength due to large, long-term movements of slopes. These "marine clays" are highly plastic and have a high shrink/swell potential, due to the presence of montmorillonite as their predominant clay mineral. "Marine clays" are typically located in continuous layers in a lateral direction of considerable distance, although, in some cases, they may form isolated clay pockets, grade into sand, or pinch out.

There is enough evidence to suggest that the steep areas of the site represent scarps that are the result of previous landslide activity. On old map notes that a former street located at the base on one of the scarps is referred to as "Slide Lane". The soils in the lower part of the site do not have distinct, continuous strata. We believe that is because the upper soils in the lower part of the site represent old colluvium.

Soil Conditions

The description of the soil conditions encountered at the site is based on the test borings performed by ECS, designated as ECS-1 through ECS-12, C-1 through C-4, D-1 and D-2.

Beneath the surficial layers of topsoil, asphalt, and gravel, interbedded sands and clays were encountered down to the boring termination depths. These strata are described in the subsequent text. In general, the subsurface conditions encountered within our maximum boring depths consisted of loose to very dense silty, clayey, and clean SAND (SM, SC, SP) and stiff to very hard CLAYS (CL, CH). The terrace deposits overlie the clays of the Cretaceous-Aged

Potomac Formation, except where they have been eroded away. For detailed information at specific boring locations, please refer to the boring logs provided in Appendix B of this report.

Stratum I-Terrace Soils (SC, SM, SP)

Beneath the surficial layers, Coastal Plain soils were encountered in the majority of the borings and generally can be described as clayey, silty, or poorly-graded clean SAND (SC, SM, SP) with scattered quartz gravels. SPT resistances ranged from 7 to 78 blows per foot (bpf), which corresponds to a relative density of loose to very dense.

Stratum II- Potomac Group (CL, CH)

Below the topsoil and/or the surficial SAND strata, the Potomac Group soils generally consisted of CLAY (CL, CH) with varying sand content. SPT resistances ranged from 13 to 50 blows per 5 inches of sampler penetration, which corresponds to a consistency of stiff to very hard. CLAY (CH), which is highly plastic and also referred to as marine clay, was encountered in the majority of the borings performed for past and current explorations. A distinct layer of marine clay, about 15 feet thick, parallels the ground surface in the section located just above the proposed MHP expansion. Marine clay is also interbedded in distinct layers at lower depths within Stratum III sands.

Although significant amounts of marine clay were not encountered in the borings located within the general area of the planned area of MHP expansion, the LEA borings indicate the presence of scattered colluvival remnants of such clays.

Laboratory tests on selected clay samples from this stratum indicated liquid limits (LL) between 28 and 65 percent and plastic limits (PL) ranging from 14 to 24, indicating low to highly plastic material. Marine clays were encountered and confirmed in the most recent supplemental borings performed at the site (borings D-1 and D-2 located along the western half of the proposed upper retaining wall).

Stratum III-Potomac Group Sands (SC, SM)

The natural soils encountered below Stratum II to the boring termination depths generally consisted of clayey or silty SAND (SC, SM). SPT resistances ranged from 44 to 50 blows per 5 inches of sampler penetration, which corresponds to dense to very dense relative densities. Auger refusal was not encountered within the depths of exploration in any of the borings.

Groundwater Observations

Observations for groundwater were made by the drilling crews during sampling and upon completion of drilling operations at each ECS boring location. The groundwater elevations appeared to follow the sloping topography across the site. The groundwater surface appears to represent a perched water table that exists in the Stratum III sand situated between the upper and lower marine clay layers. In the lower elevations of the site, the groundwater levels vary from shallow to not encountered.

The table shown below indicates the approximate depths at which the groundwater was observed at each boring location throughout our current and previous explorations.

eading n Well)
60.2)
12.5)
24.6)

¹WD – While Drilling ²BCR – Before Casing (or Auger) Removal ³CI – Cave In Depth

The highest groundwater observations are normally encountered in late winter and early spring and our current groundwater observations are not expected to be at the seasonal maximum water table. Variations in the location of the long-term water table may occur as a result of changes in precipitation, evaporation, surface water runoff, and other factors not immediately apparent at the time of this exploration.

ANALYSIS AND RECOMMENDATIONS

The planned development, consisting of the proposed mobile home park redevelopment and single-family housing, is technically feasible from a geotechnical perspective. The conclusions and recommendations presented in this report should be incorporated in the design and construction of the project to minimize possible soil and/or foundation related problems. The primary factor from a geotechnical perspective that will affect the proposed development will be slope stability issues typically associated with the underlying marine clays that exist at the site.

The marine clay soils found in the majority of the borings during the previous and current subsurface explorations are known to be a major concern with regard to slope stability. Upon review of the site plans for the proposed development, it appears that there are planned 4(H) to 1(V) cut slopes in the north part of the MHP expansion area. Also, there are local slightly steeper existing slopes in the same area. The slope stability analyses performed for the current exploration are discussed in the following sections.

It is noted that there are several large trees located throughout the proposed area to be developed. It is suggested that if the cut or fill grading requirements in the vicinity of the trees is nominal, grading changes be considered such that these trees can be saved.

Slope Stability Analyses and Considerations

Due to the planned modification of the existing site grades, including cuts, and because of the problematic nature and stability of the underlying clay soils, evaluation of the proposed grading plan is essential. For this purpose, we performed analyses of the most critical slope configurations at the site, Sections C-C, D-D, and F-F as noted on the Boring Location diagram. Due to the direction of the ground contours, landslide activity outside the area considered by the section lines noted above should not affect the areas of the proposed MHP expansion. Therefore, this report does not address these areas.

It is noted that limited development is planned for the site outside the expanded mobile home park area. The limited development will include the construction or placement of foot trails, picnic tables, etc. If construction of large structures or grading is planned, it could affect the stability of the entire park area. Therefore, if such development is planned, a project-specific geotechnical investigation and evaluation is required to develop appropriate recommendations. To the extent possible the remainder of the site should be left in its vegetated state. Ponding of water or altering the natural surface water flow is to be avoided.

Procedure and Design

The analysis of the representative subsurface profiles selected is based on assigning appropriate engineering parameters to the subsurface strata identified. Marine clay unit weights and residual strengths were assigned based on the results of direct shear testing. The strength values and unit weights of other strata were assigned on the basis of VDOT's Geotechnical Design Criteria for Coastal Plain soils. Substrata values were determined on the basis of N₆₀ values. These values are known to be more conservative than other correlations to N₆₀ values. Table D-1 in the Appendix D summarizes the strength values used in our analyses.

The results of the direct shear tests can be found in Appendix C and in table 2 on the following page.

Table 2: Summary of Direct Shear Test Results

Boring	Depth, feet	Liquid Limit LL, %	Plasticity Index Pl	Φ _{residual} , degrees
ECS-1	11.0 to 13.0	60	32	10.0
ECS-5	15.0 to 17.0	66	38	9.4

Slope Stability Analysis

The slope stability analyses were performed using a two-dimensional computerized slope stability method based on a limit equilibrium analysis. The GSTABL7 computer program was utilized to perform these computations. The factor of safety against slope instability computed by the program is defined as the ratio of the sum of the moments (or forces) resisting failure divided by the sum of the moments (or forces) causing failure along a specified potential failure surface. Because of the margin of uncertainty regarding soil parameters in-situ, and the lower-limit values assumed for the soil parameters, a factor of safety of 1.3 is considered to be the minimum adequate factor of safety for planned slope design, not considering seismic loading conditions. When considering seismic loading conditions, the minimum suggested factor of safety is 1.1.

The GSTABL7 program utilized the Simplified Bishop Method of slices to compute the factors of safety for circular and block potential failure surfaces. During this analysis, numerous conditions and potential failure surfaces were analyzed.

Slope cross sections (C-C through F-F), which are shown on the Boring Location Diagram, were analyzed. These cross-sections were identified by ECS as representative, post-construction design slopes. Estimated subsurface profiles representing these cross sections are included in Appendix A. A review of the analyses performed is presented in Table 3 on the following page.

Regardless of the thoroughness of a geotechnical investigation, there is a risk that subsurface conditions might be different at locations between borings. There is also the possibility that extreme rainfall or future site development could affect the stability of the site. Recognizing this, our recommendations and analyses have been conservative.

Analysi s No.	Slope Section	Pile Wall	Analysis Location	Analysis Type	Factor of Safety		
1	Section C-C'	No Pile Wall	Lower Slope	Circular	3.22		
2	Section C-C'	No Pile Wall	Oveall Slope	Circular	2.45		
3	Section C-C'	No Pile Wall	Upper Slope	Block	1.75		
4	Section D-D'	No Pile Walls	Middle to Upper Slope	Circular	3.62		
5	Section D-D'	No Pile Walls	Overall Slope	Block	3.17		
6	Section D-D'	No Pile Walls	Overall Slope	Circular	3.67		
7	Section D-D'	No Pile Walls	Lower to Middle Slope	Circular	2.94		
8	Section D-D'	No Pile Walls	Lower Slope	Block	3.12		
9	Section D-D'	No Pile Wall	Lower Slope High WT	Block	2.27		
10	Section D-D'		No longer used.				
11	Section F-F'	No Pile Walls	Overall Slope	Circular	2.02		
12	Section F-F'	No Pile Walls	Upper Slope	Block	1.89		
13	Section F-F'	No Pile Walls	Middle Slope	Block	1.26		
14	Section F-F'	No Pile Walls	Lower to Middle Slope	Circular	1.12		
15	Section F-F'	No Pile Walls	Lower Slope	Block	1.01		
16	Section F-F'	With Upper Pile Wall	Below Pile Wall	Circular	1.92		
17	Section F-F'	With Upper Pile Wall	Above Pile Wall	Block	1.44		
18	Section F-F'	With Upper Pile Wall	Through Pile Wall	Circular	1.30		
19	Section F-F'	With Upper Pile Wall	Below Pile Wall	Block	1.03		
20	Section F-F'	With Lower Pile Wall	Through Pile Wall	Block	1.29		
21	Section F-F'	With Lower Pile Wall	Through Pile Wall	Circular	1.33		

 Table 3: Slope Stability Analysis Results

It is noted that the final wall locations have changed very slightly since the above analyses have been performed. The wall locations were changed to accommodate a few of the larger existing trees. Since the changes in wall locations were minor, no further reanalysis is considered to be necessary. The wall plan and profile locations included in the Appendix represent the final wall locations.

Pile Wall Recommendations

Section F-F' requires a pile wall to be placed near the +138-foot contour. This will reduce the potential of failure of the upper slope. If the pile wall is placed at a lower elevation, there is potential for the upper slope to fail and slide over the wall. Due to the relatively thick stratum of marine clay that appears to be present at this section, a second lower wall is required to stabilize the slope below the upper pile wall.

Based on the initial borings, it appears that a thin stratum of marine clay is present in the planned cut slope in Section D-D'. However, subsequent drilling of Borings D-2 indicates no marine clay in the vicinity of this boring. Since the stratum is thin, analyses of several areas within this section indicate that it is stable. If we were to consider that seasonal wet weather could cause a perched water table to develop above our originally estimated marine clay layer, the stability in the cut area is indicated to be marginal. Therefore, we previously recommended continuing the upper pile wall through this section. Based on our final analyses, the stability of the slope represented by cross section D-D appears to have adequate factors of safety. Nevertheless, the removal of the toe for the grading plan causes us some concern as marine clay layers could be intermittent and it is believed that this area might be an old scarp remnant. Therefore, we recommend that the wall continue west to Line C-C.

The profile for Section C-C' indicates that the marine clay stratum pinches out just above the top of the cut slope. The analyses performed of various sections along this section indicate that it is stable. Based on the boring information, the upper wall can end at this point.

The design of the upper pile wall was based on the analysis of Section F-F', which is considered to be the most critical case as the marine clay is about 19.0 feet thick in this section. Based on GSTABL analyses, the piles spaced on 6-foot centers require a force of 15 kips to improve the factor of safety to 1.3 or better. To determine the maximum bending moment on the piles, two methods of analysis were employed. First, we considered that all ground above the slide plane was 'removed' and the 15-kip load was applied as distributed load above the slide plane. The pile was then analyzed for maximum moment using LPILE. The corresponding required section modulus would be 42 in³. Second, the pile was analyzed using Rankine earth pressures assuming that half of the material above the slide plane could be 'removed' by slumping below the pile wall. The corresponding required section modulus would be 135 in³. Both cases are a bit conservative. The first one requires a low section modulus for bending, but does require a higher modulus (\approx 135 in³) to limit deflection. We selected an HP 14 x 89 pile (S_x = 131 in³). Based on working stress design, this pile will have a FS of about 1.5. It is our experience that sufficient soil arching will prevent squeeze through the pile if the spacing is limited to 6.0-foot centers. The above analyses also indicate that the recommended embedment depths exceed the depths required for pile fixity. A similar approach was used for the lower pile wall and an HP 14 x 73 pile is required. It is noted that a section modulus considerably less than that of an HP 14 x 73 is required, but this pile was selected because of its flange width.

The Boring Location Diagram in Appendix A includes the location of the pile walls. All geometric data required for layout is presented on this drawing. A separate drawing included in Appendix A includes the pile wall profiles. The results of our stability analyses and pile wall calculations are presented in Appendix D.

The piles may be driven or installed in pre-bored holes. Driving piles will be quicker and require less equipment than pre-boring, although there will be the noise nuisance factor. Also, it is not necessary to terminate piles in 'refusal' materials, so driving will be relatively easy. If the piles are pre-bored, they must be centered and held in place until the grout sets. Grout should have a compressive strength of 2,500 psi. The grout should completely fill the annular spaces.

The piles should be installed and the site restored prior to cutting the slope for the planned MHP expansion. It is recognized that it will be necessary to cut benches across the hillside to install the pile walls. The benches should be as small as practical. Deep cuts or placement of large fills must be avoided. Localized sheeting and shoring should be employed if cuts are greater

than 6 feet. Immediately after the piles are installed, the site should be restored to its natural grade, seeded, and covered with erosion protection mats.

It is recommended that cutting benches should only occur after and during a period of dry weather conditions. Constructing temporary excavations with saturated ground conditions increases the risk of ground instability.

Site Drainage

To help promote slope stability, surface water run-off should not be concentrated or directed to cut and fill slope faces. All slopes should be seeded and covered with erosion protection mats, such as VDOT Type EC-2, immediately after grading. Roof downspouts should be connected to the site stormwater collection system.

Underdrains, VDOT Type UD-1, should be placed along the high side of upper loop roadway. Additionally, underdrains, VDOT Type UD-7, should be placed along the low side of this roadway and the other roadways to be constructed.

Sidewalks should be provided with underdrains, FCPFM Type UD-3, when the sidewalk grade exceeds 3 percent.

Foundations

It is expected that concrete pads, rather than footings, will be used to support the mobile homes. The loads will be distributed over a large area and the applied bearing pressures will be low. It is recognized that the pads will be constructed over old colluvial soils. Consequently, the soil types at the foundation levels will vary in density and soil types. Marine clay will be present at scattered locations.

In order to improve soil density and to provide a non-frost susceptible foundation it is recommended that the soils within the pad footprint be undercut to a depth of 2.5 feet, or deeper if rootmat is present, and replaced with a non-frost susceptible soil. Acceptable soils would include silty or clayey sands (SC, SC) with less than 30 percent fines and a PI < 10. Other acceptable non-frost-susceptible soils include VDOT 21 aggregate. Clean sands or aggregates should not be used as they can fill with water that could freeze and heave.

After excavation, the subgrade should be examined. If soft soils are present, they should be excavated and replaced or densified to a condition that will permit placement of compacted fill above.

Water should be diverted from the excavations. If water seeps into the excavations, it should be removed expeditiously with small sump pits and pumping. The excavations should be backfilled up to the slab level the same day they are dug. Open excavations should not be permitted to stand overnight.

The design of the concrete pads should be based on an allowable bearing pressure of 3,000 psf and a modulus of subgrade reaction of 150 pci. The edges of the slab should be turned down and bear 2.5 feet below exterior grade.

Roadways

Based on the results of the laboratory tests, we recommend that the pavement design utilize a CBR value of 5.3, which is two-thirds of the average test value. All pavement materials and construction methods should be in compliance with the latest VDOT Road and Bridge Specifications.

During grading, occasional highly plastic soils will be encountered at the subgrade level. These soils should be undercut entirely or at least 2 feet and replaced with acceptable compacted fill. There is also the possibility that highly plastic soils might be present just below the graded surface. To delineate these zones, it is recommended that the Geotechnical Engineer perform hand auger probes at 25-foot intervals per roadway lane. If highly plastic soils are encountered they should be undercut and replaced as required above. The recommendations in this paragraph include roadways, curbs and gutters, and sidewalks.

The roadways pavement and base course aggregate should be graded with a minimum slope of one-quarter inch per foot (2%) to promote drainage. The base course aggregate must communicate directly with the underdrains.

It is common practice in residential construction to install only the base aggregate and the base course asphalt during initial construction, and then the final topping surface asphalt much later in the construction process. Often, depending upon the sequence and timing of construction, the final pavement surface may not be placed until several months after the initial base asphalt is placed. Often, the most critical load conditions for most residential developments occur during the construction phase when the pavement system is subjected to loading that includes construction equipment and other heavy trucks when the pavement section is not at its full strength. There are other recommendations that the designers should consider such as using thicker-than-required aggregate bases, or the use of geogrids and/or geotextiles.

Depending upon the time in which the temporary construction is used as a service road, some failures should be expected. If the construction pavement system fails, it will be necessary to remove this failed section and subgrade soils and replace them with the initial design section or an equivalent repaired section.

Large, front loading trash dumpsters frequently impose concentrated front-wheel loads on pavements during loading. In a similar manner, truck loading docks can also experience very high turning wheel loads. This type of loading typically results in rutting of the pavement and ultimately pavement failures. Therefore, we recommend that the pavement in trash pickup areas and at loading docks, if any, consist of a 6-inch thick, mesh reinforced concrete slab, with a minimum unconfined compressive strength of 4,000 psi, resting on 6 inches of VDOT 21A aggregate.

CONSTRUCTION RECOMMENDATIONS

Subgrade Preparation and Earthwork Operations

The subgrade preparation should consist of stripping all vegetation, rootmat, topsoil, and any other soft or unsuitable material from the proposed mobile home pads and pavement areas. We recommend the earthwork clearing be extended 2 feet beyond pad and pavement limits.

After stripping to the desired grade, and prior to fill placement, the stripped surface should be observed by an experienced geotechnical engineer or their authorized representative. Proofrolling pavement areas using a loaded dump truck, having an axle weight of at least 10 tons, should be performed to identify localized soft or unsuitable material that should be removed. Proofrolling of roadways should also be performed once the final grade is achieved and prior to placing the base course aggregate.

Special efforts should also be made to identify unsuitable soils. Any soft or unsuitable materials encountered during this proofrolling should be removed and replaced with an approved backfill compacted to the criteria given in the section below.

Fill Placement

All fills should consist of approved materials, free of organic matter, debris, and cobbles greater than 4 inches. They should have a liquid limit and plasticity Index less than 40 and 20, respectively. Non-frost susceptible materials should meet the requirements previously indicated. Most of the site's SAND soils (SC, SM, SP) will likely meet the plasticity requirements for re-use as engineered fill. It is possible that some of the low plasticity CLAY (CL) and SILT (ML) soils will also meet the plasticity requirements for re-use as fill; however, these soils will be more difficult to place and compact when compared to the sandier soils. Unacceptable fill materials include topsoil and organic materials (OH, OL), and high plasticity clays and silts (CH, MH). Under no circumstances should high plasticity soils be used as fill material in proposed structural areas or close to site slopes.

The on-site SAND (SC, SM, SP) and low plasticity CLAY (CL) and SILT (ML) soils may require moisture content adjustments, such as the application of discing or other drying techniques or spraying of water to the soils prior to their use as controlled fill materials (termed manipulation). Some of the on-site CLAY (CL) and SILT (ML) soils may not meet the plasticity requirements for reuse as engineered fill. The planning of earthwork operations should recognize and account for increased costs associated with manipulation of the on-site materials considered for re-use as compacted fill.

Fill materials should be placed in lifts not exceeding 8 inches in loose thickness and moisture conditioned to within $\pm 2\%$ of the optimum moisture content. Soil bridging lifts should not be used. Controlled fill soils should be compacted to a minimum of 95% of the maximum dry density obtained in accordance with ASTM Specification D-698, Standard Proctor Method. Additionally, the upper 1.0 foot of soil supporting mobile home pads, pavements, sidewalks, or curbs and gutters should be compacted to a minimum of 98% of the maximum dry density.

Grade control should be maintained throughout the fill placement operations. All fill operations should be observed on a full-time basis by a qualified soil technician to determine that the specified compaction requirements are being met. A minimum of one compaction test per

2,500-square foot area should be tested in each lift placed. The elevation and location of the tests should be clearly identified at the time of fill placement.

Compaction equipment suitable to the soil type used as fill should be used to compact the fill material. Theoretically, any equipment type can be used as long as the required density if achieved. Ideally, a steel drum roller would be most efficient for compacting and sealing the surface soils. All areas receiving fill should be graded to facilitate positive drainage.

It should be noted that prior to the commencement of fill operations and/or utilization of any offsite borrow materials, the Geotechnical Engineer of Record should be provided with representative samples to determine the material's suitability for use in a controlled compacted fill and to develop moisture-density relationships.

Fill materials should not be placed on frozen soils or frost-heaved soils and/or soils that have been recently subjected to precipitation. All frozen soils should be removed prior to continuation of fill operations. Borrow fill materials, if required, should not contain frozen materials at the time of placement. All frost-heaved soils should be removed prior to placement of compacted fill, granular subbase materials, foundation or slab concrete, and asphalt pavement materials.

Construction Dewatering

Excavations performed at this site might encounter perched groundwater conditions, surface water flowing from the higher elevations of the site, or seasonally high groundwater levels. We anticipate that some localized areas within the excavations may not be completely dry and could require the use of trenches and pits with pumps to dewater the excavations.

Additionally, the surface of the site should be kept properly graded in order to enhance drainage of the surface water away from the proposed working areas during the construction phase.

Temporary and Permanent Slopes

For temporary cuts or excavations, side slopes as steep as 3H:1V are possible in the natural soils observed at this site. For long-term stability, side slopes should be constructed no steeper than 4.5H:1V in natural soils. All temporary and permanent slopes should be immediately protected, such as by seeding and mulching as soon as possible after placement, to prevent from sloughing and erosion. Maintenance should be anticipated for temporary slopes which remain in place for more than about thirty days.

The contractor should avoid stockpiling excavated materials or equipment immediately adjacent to any slopes.

Closing

We recommend that if there are any changes to the project information as outlined in this report, ECS be retained to review the plans and determine if modifications to the recommendations are necessary or if additional geotechnical recommendations are necessary for the proposed development.

APPENDICES

Appendix A – Drawings

Boring Location Diagram with: Site Location Plan Pile Wall Plan Locations

Boring Cross-Sections (C-C' through F-F')

Pile Wall Profiles

Appendix B – Soil Test Borings

Unified Soil Classification System

Reference Notes for Boring Logs

ECS Boring Logs D-1 and D-2

ECS Boring Logs C-1 through C-4

ECS Boring Logs ECS-1 through ECS-12

Appendix C – Laboratory Test Results

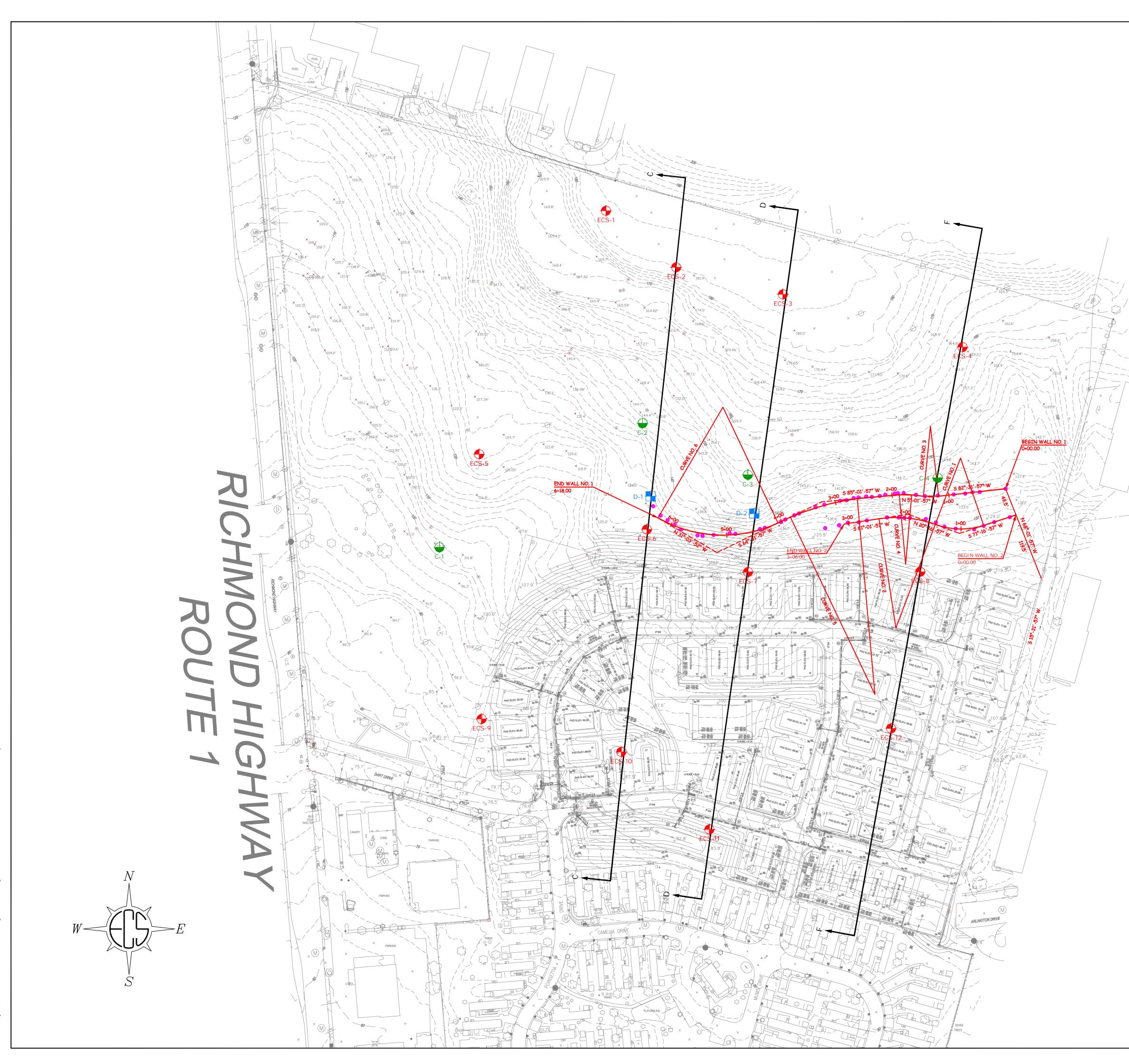
Laboratory Testing Summaries

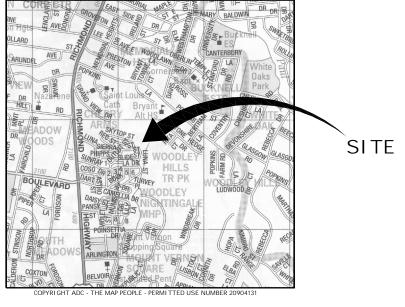
Grain Size Analyses

Plasticity Chart

CBR Tests

Residual Direct Shear Test Results (2 tests)


Appendix D – Calculations


Soil Parameter Sheets

Slope Stability Analyses Outputs

Pile Wall Calculations

Appendix A – Drawings

VICINITY MAP

CURVE DATA

CURVE NO. 1

- PC = 0+60.00 $\Delta = 39^{\circ}-00'-00''$ R = 125.50 L = 85.08T = 44.44
- I = 44.44 PT = 1+45.08

CURVE DATA

CURVE NO. 2

PC = 1+45.08

R = 195.00

T = 99.55 PT = 2+44.63

CURVE DATA

L = 50.88

∆ = 29°-15'-00"

CURVE DATA

CURVE DATA

CURVE NO. 4

PC = 1+65.27 $\Delta = 10^{\circ}-00'-00''$ R = 125.00 L = 21.82 T = 10.94PT = 1+87.00

CURVE NO. 5

PC = 2+48.59 $\triangle = 20^{\circ}-30'-00''$ R = 345.00L = 62.39T = 123.44PT = 3+72.02

CURVE DATA

CURVE NO. 3

PC = 1+17.50	
∆ = 12°-30'-00"	
R = 125.00	
L = 27.27	
T = 13.69	
PT = 1+44.77	

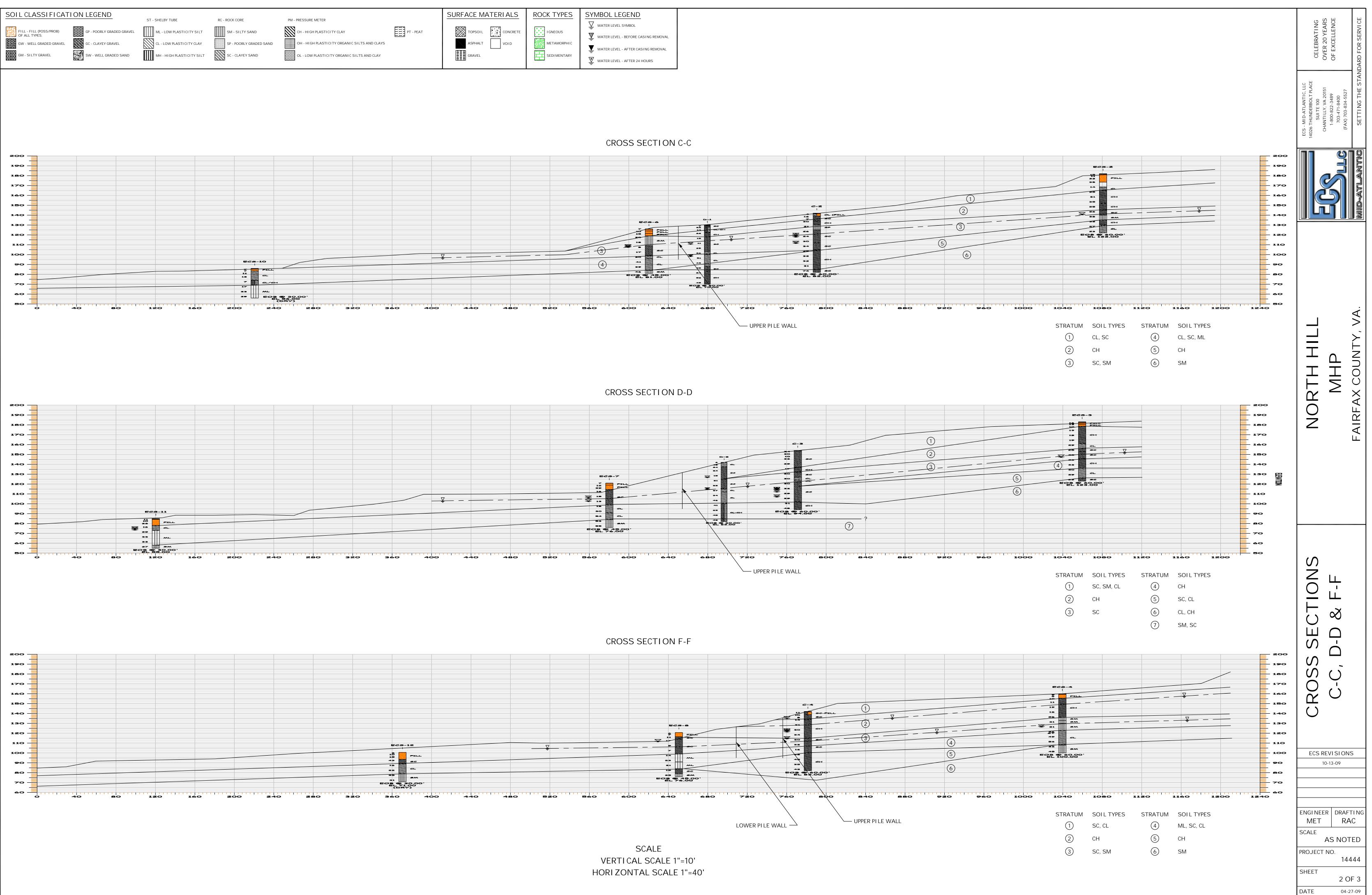
CURVE NO. 6

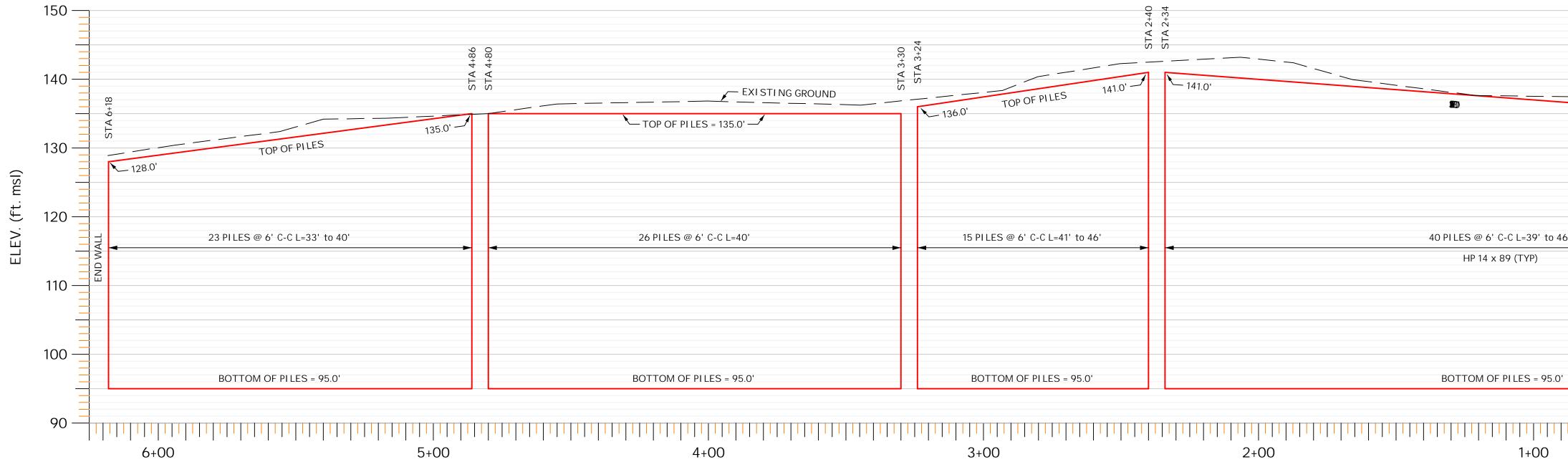
PC = 3+96.00 $\Delta = 56^{\circ}-31'-55''$ R = 225.00 L = 222.00 T = 120.98PT = 6+18.00

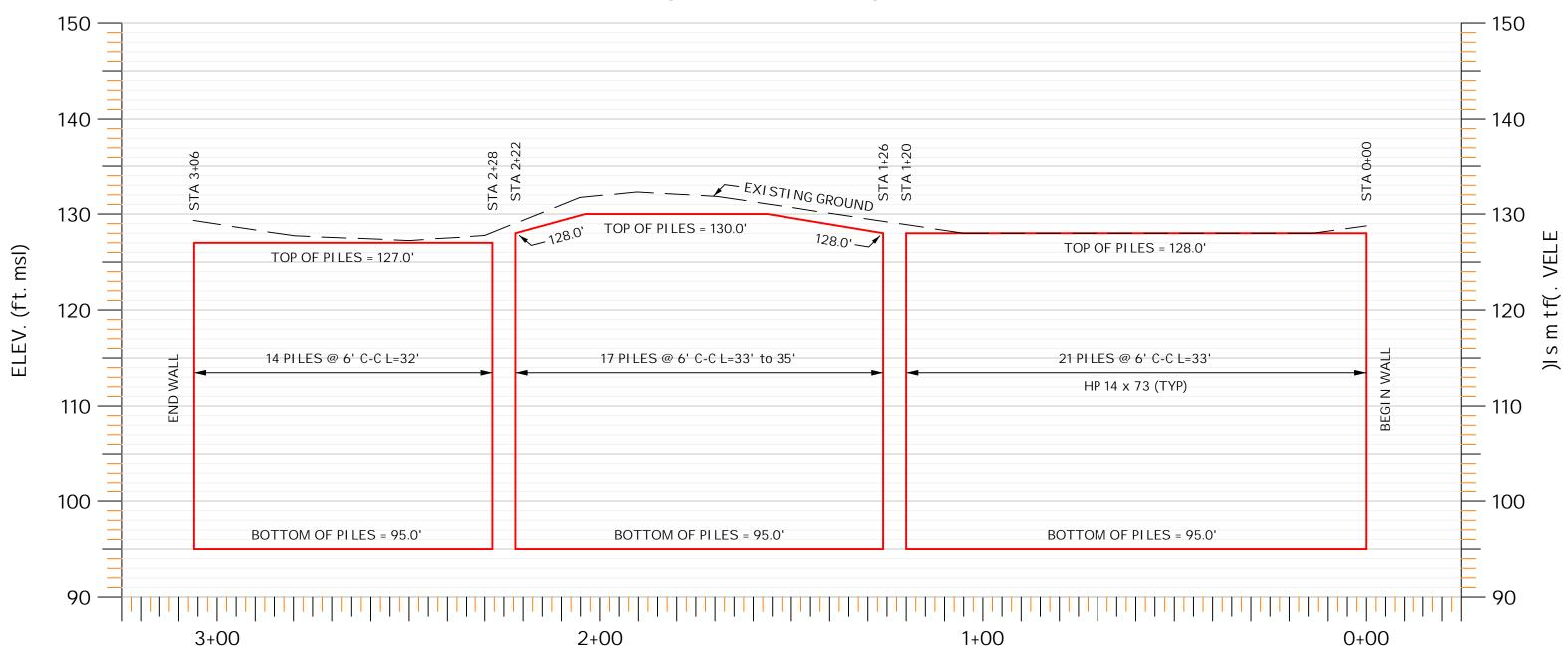
LEGEND

APPROX. BORI NG LOCATION (ECS MARCH 2009) APPROX. BORI NG LOCATION (ECS JULY 2009) APPROX. BORI NG LOCATION (ECS SEPT 2009)

 FLAGGED FIELD LOCATIONS (HOT PINK RIBBON) NOTING APPROXIMATE WALL LOCATIONS.


NOTES:


WALL NO. 1 PILES SHALL BE HP 14 x 89, GRADE 50, SPACED ON 6-FOOT CENTERS.
 WALL NO. 2 PILES SHALL BE HP 14 x 73, GRADE 50, SPACED ON 6-FOOT CENTERS.
 PLACE ALL PILES WITH WEBS PERPINDICULAR TO THE GROUND CONTOURS.


	VA 20191 OVEK 20 TEAKS -3489 OF EXCELLENCE 3400	SETTING THE STANDARD FOR SERVICE
ECS - MID-ATLANTIC, LLC 14026 THUNDERBOLT PLACE SUI TE 100	1-800-822-3489 703-471-8400 (FAX) 703-834-6577	MID-ATLANTIC SETTIN
NORTH HILL	MHP	FAIRFAX COUNTY, VA.
C	STABILITY ENHANCING WALL PLAN 10-10-09 0-14-09	NS
ENGI NEE JCG SCALE PROJECT SHEET	R 1" NO. 14	FTING AC =80' 1444 OF 3

DATE

03-17-09

UPPER PILE WALL PROFILE

SCALE VERTICAL SCALE 1"=10' HORI ZONTAL SCALE 1"=25'

NOTE: TOPS (

1+00 0+00 2+00

LOWER PILE WALL PROFILE

)Is m tf(. VELE				ECS 1402	WID-ANLAN ING THE STANDARD FOR SERVICE
l S (150		NORTH HILL MHP FAIRFAX COUNTY, VA.	
==39' to 46' TYP) ES = 95.0' 1+00 O+	BEGIN WALL	- 140 - 130 - 120 - 110 - 100)I s m tf(. VELE	DILE WALL PROFILE ECS REALINN	
TE: TOPS OF PILES MAY BE CUT OFF AT HIGHER ELEVATION TO ACCOMODATE ACTUAL SITE GRADES.	IS			ENGINEER JCG SCALE PROJECT NO. 14444 SHEET 3 OF 3 DATE 10-13-09	5 4 3

Appendix B – Soil Test Borings

UNIFIED SOIL CLASSIFICATION SYSTEM (ASTM D 2487)

Ν	Major Divisions Group Symbols Typical Names					L	Labor	atory	Class	ificatio	on Crit	eria											
	<u>.</u>	Clean gravels (Little or no fines)	GV		Well-graded gravels, gravel- sand mixtures, little or no fines	no		d soils		xtures little or no $C = D_{r}/D_{r}$ greater than 4			$C_{u} = D_{60}/D_{10} \text{ greater than 4}$ $C_{c} = (D_{30})^{2}/(D_{10}xD_{60}) \text{ between 1 and 2}$										
	se fraction eve size)	Clean gra (Little or fines)	GF	>	Poorly graded gravels, gravel-sand mixtures, little or no fines			Not meeting all gradation requirements for				for GV	V										
Coarse-grained soils (More than half of material is larger than No. 200 Sieve size)	Gravels (More than half of coarse fraction is larger than No. 4 sieve size)	Gravels with fines (Appreciable amount of fines)	GMª	d u	Silty gravels, gravel-sand mixtures	e ce			rve. :00 sieve size), coa ols ^b		ve. 00 sieve size), coar					limits ss tha	s belo n 4	w "A"	line	betwe borde	en 4 rline ca	and ases re	equiring
ained soils arger than 1	(Mo	Grav (Apprec	GC	;	Clayey gravels, gravel-sand- clay mixtures	grain-size curve. ler than No. 200		g dual symt	Atterberg limits below "A" line or P.I. less than 7			line	use of dual symbols			5							
Coarse-grained soils naterial is larger than	sic	Clean sands (Little or no fines)	SV	V	Well-graded sands, gravelly sands, little or no fines	avel from g	SC	es requirinç	C _u = C _c =	= D ₆₀ / = (D ₃₀	D ₁₀ gr) ² /(D ₁₀	reater ₀xD ₆₀)	than 6 betwe	6 een 1 a	and 3								
an half of n	rse fraction sieve size)	Clean (Little fin	SF	>	Poorly graded sands, gravelly sands, little or no fines	of sand and gravel from grain-size curve. Je of fines (fraction smaller than No. 200 si GW, GP, SW, SP GM, GC, SM, SC Borderline cases requiring dual symbols ^b		Not	meet	ing al	ll grad	ation	require	rements for SW									
(More the	Sands (More than half of coarse fraction is smaller than No. 4 sieve size)	Sands with fines (Appreciable amount of fines)	SMª	d u	Silty sands, sand-silt mixtures	Determine percentages of sand and gravel from Depending on percentage of fines (fraction small are classified as follows: Less than 5 percent GW, GP, SW, SP More than 12 percent GM, GC, SM, SC 5 to 12 percent Borderline cases requiri		percentages of se a on percentages of ed as follows: 5 percent GM, 12 percent GM, cent Borc		 Percentages of signal percentages of signal percentage of ied as follows: 5 percent GM 12 percent GM 		Determine percentages of se Depending on percentage of are classified as follows: Less than 5 percent GW More than 12 percent GM 5 to 12 percent Bor		zone with I and 7 a			with P 7 ar	tting in CL-ML P.I. between 4 are borderline					
	oM) s	Sano (Apprec	SC	;	Clayey sands, sand-clay mixtures	Determine Depending are classif are sthan More than 5 to 12 pe		Atterberg limits above "A" line with P.I. greater than 7 with P.I. greater than 7			line	cases requiring use of dual symbols			use of								
(6	Silts and clays (Liquid limit less than 50)		ML		Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts with slight plasticity						Pla	sticity	y Cha	rt									
o. 200 Sieve)	Silts and d	uid limit less	CL	-	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays		60 50								".	A" line							
ls than Nc		(Lig	OL	-	Organic silts and organic silty clays of low plasticity	ex	40							0	СН	\langle		_					
Fine-grained soils aterial is smaller th	S S	than 50)	MF	ł	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	Plasticity Index	30			CL	,												
Fine-grained soils (More than half material is smaller than No. 200	Silts and clays	limit greater	CH	ł	Inorganic clays of high plasticity, fat clays			Pla						1	мн	and Ol	H						
e than hal	S -	(Liquid	OF	ł	Organic clays of medium to high plasticity, organic silts		0		CL-1			and O											
(More	Highly	Organic soils	Pt		Peat and other highly organic soils			0	10	20	30	40 Liq	50 Juid Li	60 imit	70	80	90	100					
L.L. i ⁵ Bor	s 28 or les derline cla	s and the assification	P.I. is 6 is, used	or le: I for s	bubdivisions of d and u are for roa ss; the suffix u used when L.L. is soils possessing characteristics ture with clay binder. (From Ta	greater the fit of two gro	han 28 oups,	3. are d	esigna	ated	by co	mbina			-								

REFERENCE NOTES FOR BORING LOGS

I. **Drilling Sampling Symbols**

REC

- SS Split Spoon Sampler ST Shelby Tube Sampler RC Pressuremeter
 - Rock Core, NX, BX, AX ΡM RD
- Dutch Cone Penetrometer DC
- Bulk Sample of Cuttings BS Hollow Stem Auger HSA
- Rock Bit Drilling PA Power Auger (no sample)
- WS Wash sample
- Rock Sample Recovery % RQD Rock Quality Designation %

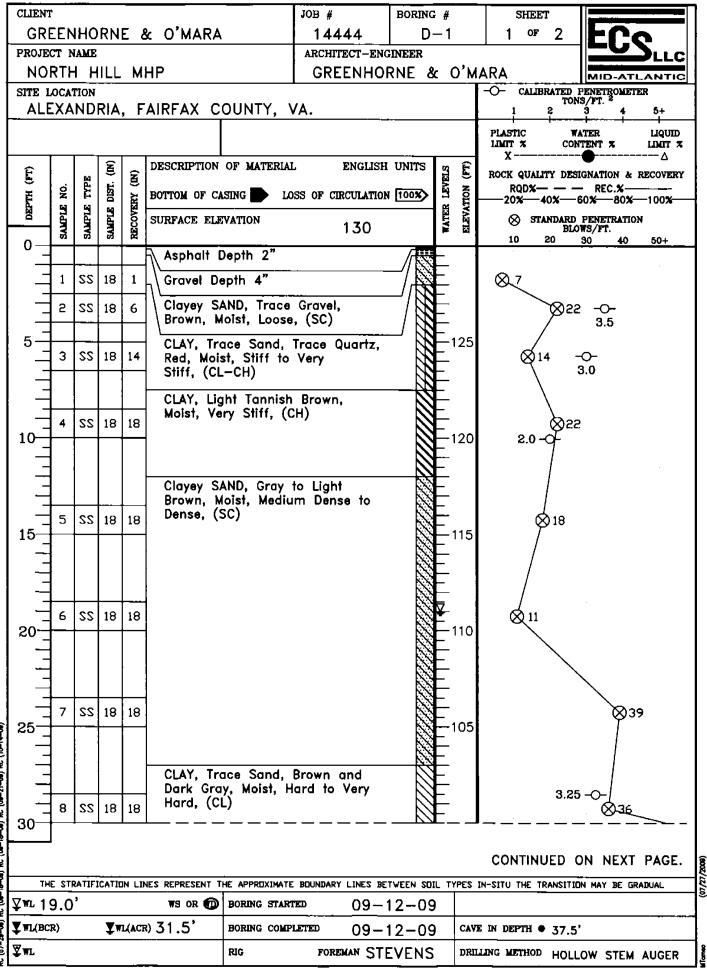
II. **Correlation of Penetration Resistances to Soil Properties**

Standard Penetration (blows/ft) refers to the blows per foot of a 140 lb. hammer falling 30 inches on a 2-inch OD split-spoon sampler, as specified in ASTM D 1586. The blow count is commonly referred to as the N-value.

Non-Cohesive Soils (Silt, Sand, Gravel and Combinations) Α.

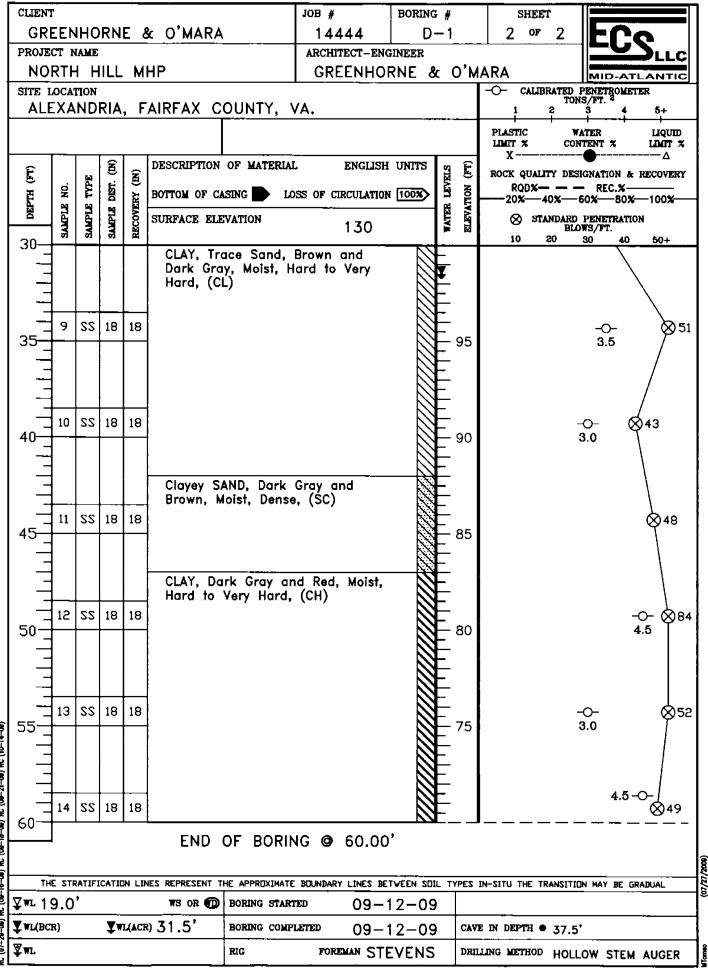
Dens	sity	Relative Properties				
Under 4 blows/ft	Very Loose	Adjective Form	12% to 49%			
5 to 10 blows/ft	Loose	With	5% to 12%			
11 to 30 blows/ft	Medium Dense					
31 to 50 blows/ft	Dense					
Over 51 blows/ft	Very Dense					

	P	article Size Identification
Boulders		8 inches or larger
Cobbles		3 to 8 inches
Gravel	Coarse	1 to 3 inches
	Medium	1/2 to 1 inch
	Fine	1/4 to 1/2 inch
Sand	Coarse	2.00 mm to ¼ inch (dia. of lead pencil)
	Medium	0.42 to 2.00 mm (dia. of broom straw)
	Fine	0.074 to 0.42 mm (dia. of human hair)
Silt and Clay		0.0 to 0.074 mm (particles cannot be seen)

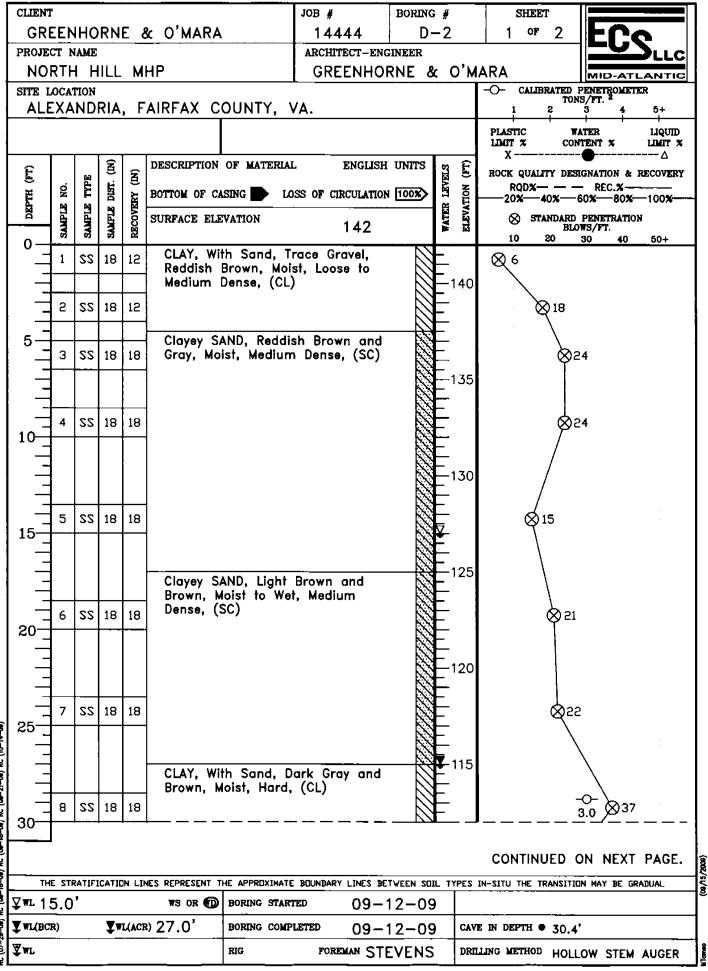

Β. Cohesive Soils (Clay, Silt, and Combinations)

Blows/ft	Consistency	Unconfined Comp. Strength Q _p (tsf)	Degree of Plasticity	Plasticity Index
Under 2	Very Soft	Under 0.25	None to slight	0-4
3 to 4	Soft	0.25-0.49	Slight	5 – 7
5 to 8	Medium Stiff	0.50-0.99	Medium	8 – 22
9 to 15	Stiff	1.00-1.99	High to Very High	Over 22
16 to 30	Very Stiff	2.00-3.00		
31 to 50	Hard	4.00-8.00		
Over 51	Very Hard	Over 8.00		

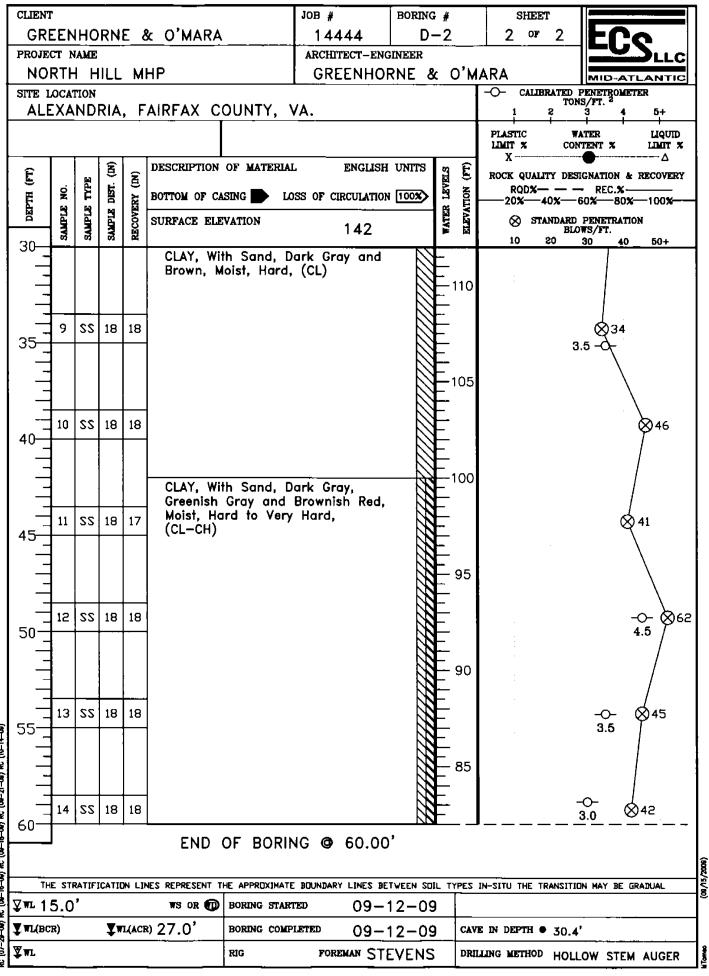
III. Water Level Measurement Symbols

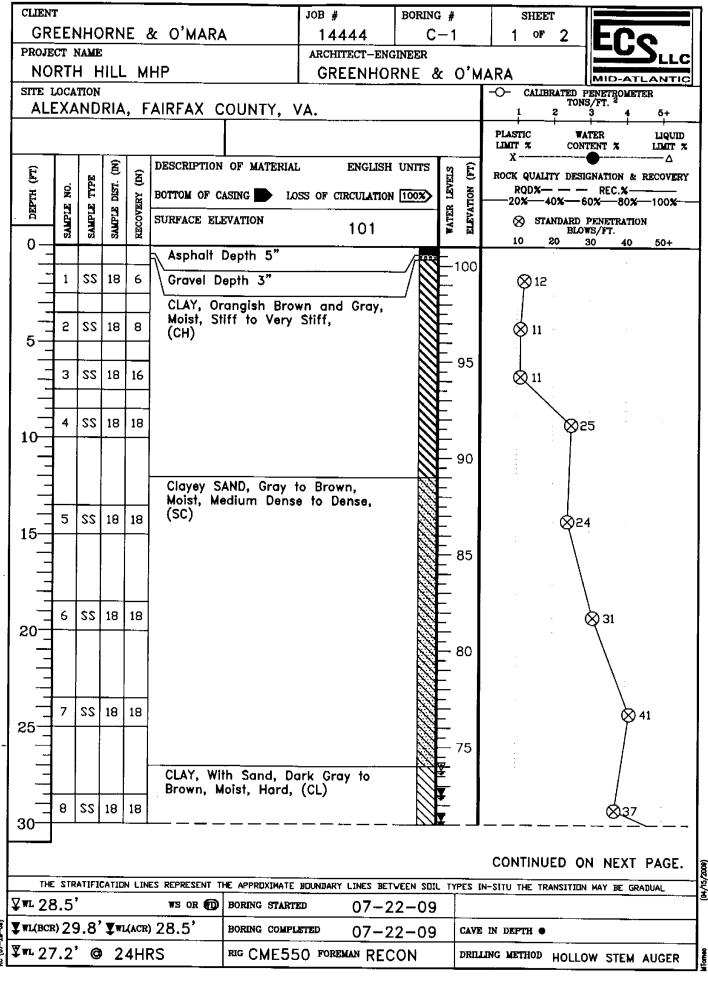

WL Water Level	BCR	Before Casing Removal	DCI Dry Cave-In
WS While Sampling	ACR	After Casing Removal	WCI Wet Cave-In
WD While Drilling	∇	Est. Groundwater Level	🗑 Est. Seasonal High GWT

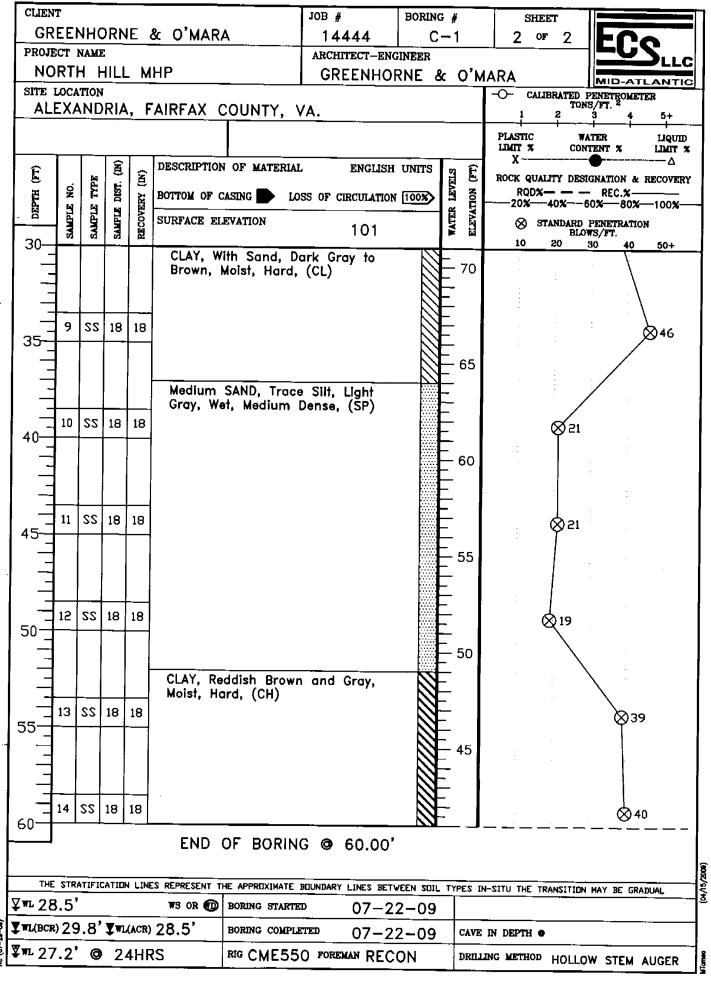
The water levels are those levels actually measured in the borehole at the times indicated by the symbol. The measurements are relatively reliable when augering, without adding fluids, in a granular soil. In clay and plastic silts, the accurate determination of water levels may require several days for the water level to stabilize. In such cases, additional methods of measurement are generally applied.

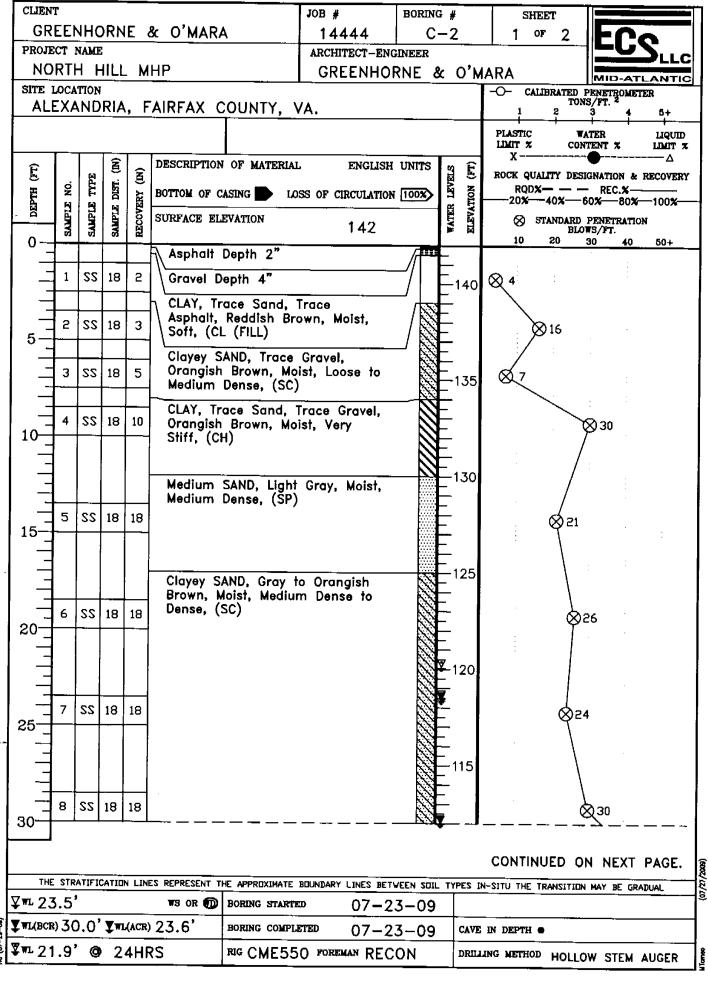


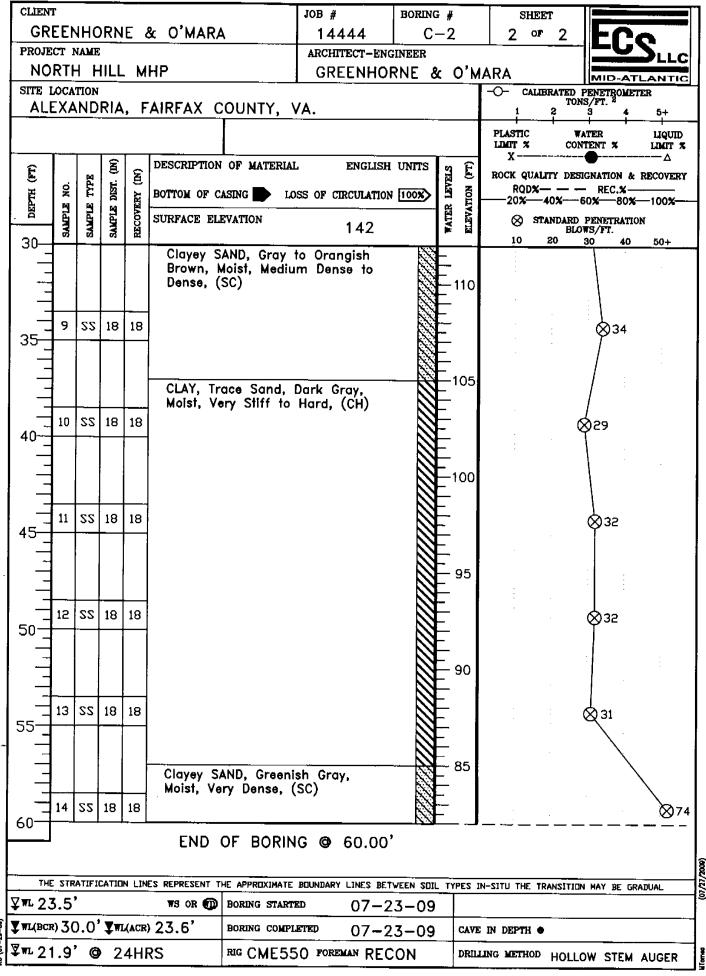
\Geotechnical\{eProjects}\14400-14499\01-14444\b-Drafting\1444BL2.dwg, 10/14/2009 2:12:32 PM, ECS Mid-Atlantic, LLC. Chantilly, VA. x (0-15-00) xc (06-15-00) xc (06-15-00) xc (10-14-00)

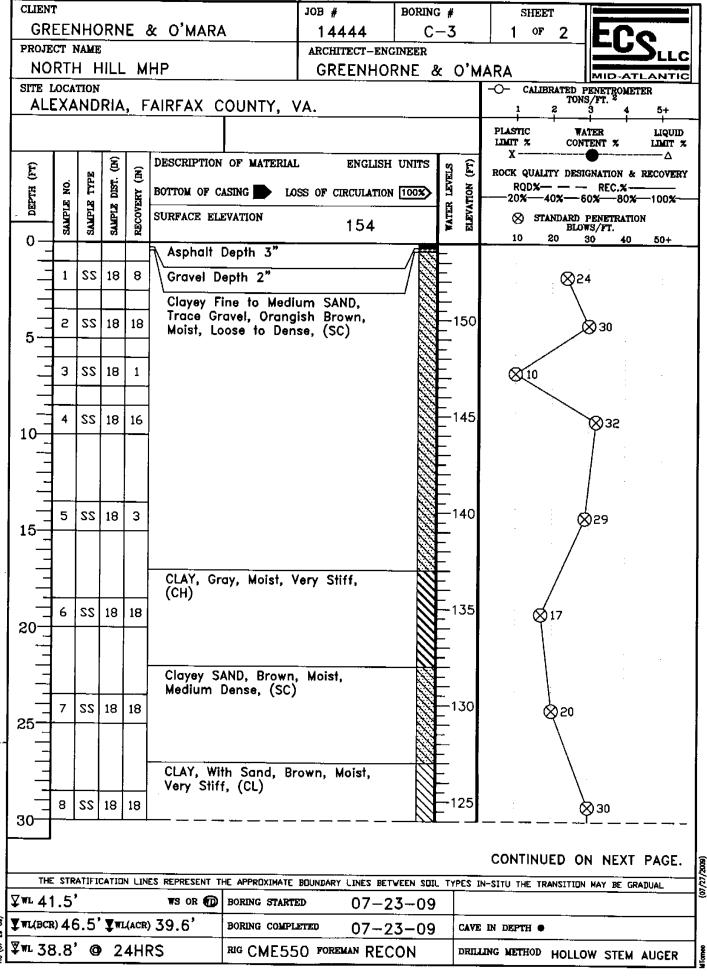

Ξł

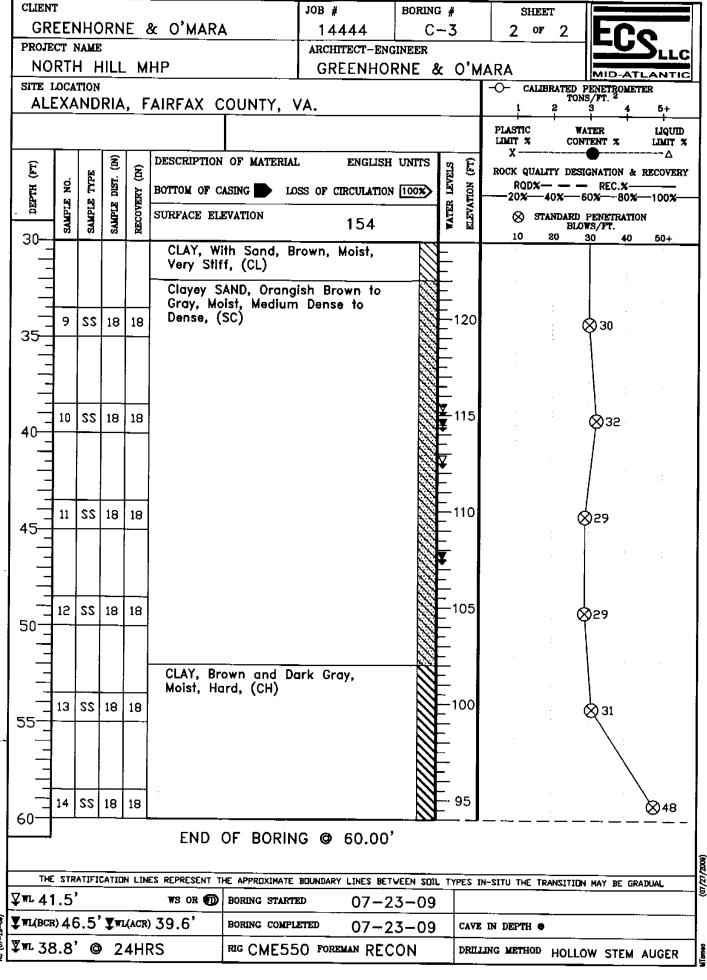

/Geotechnical/(eProjects)/14400-14499/01-14444/b-Drafting/14448L2.dwg, 10/14/2009 2:12:34 PM, ECS Mid-Atlantic, LLC. Chantilly, VA. x (n-z-us) xc (u-16-us) xc (uo-18-us) xc (10-14-08)

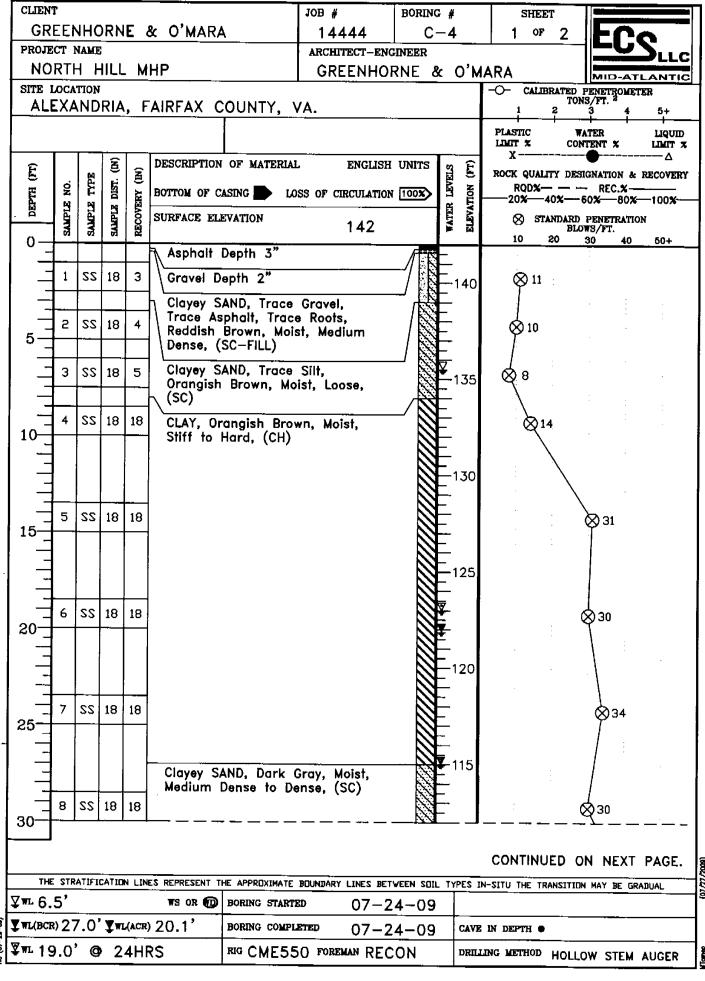

:\Geotechnical\[eProjects]\14400-1449\01-1444\b-Draftinq\1444BL2.dwg, 10/14/2009 2:12:36 PM, ECS Mid-Atlantic, LLC. Chantilly, VA, (08-16-08) RC (06-16-00) RC (06-21-00) RC (10-14-09) 8

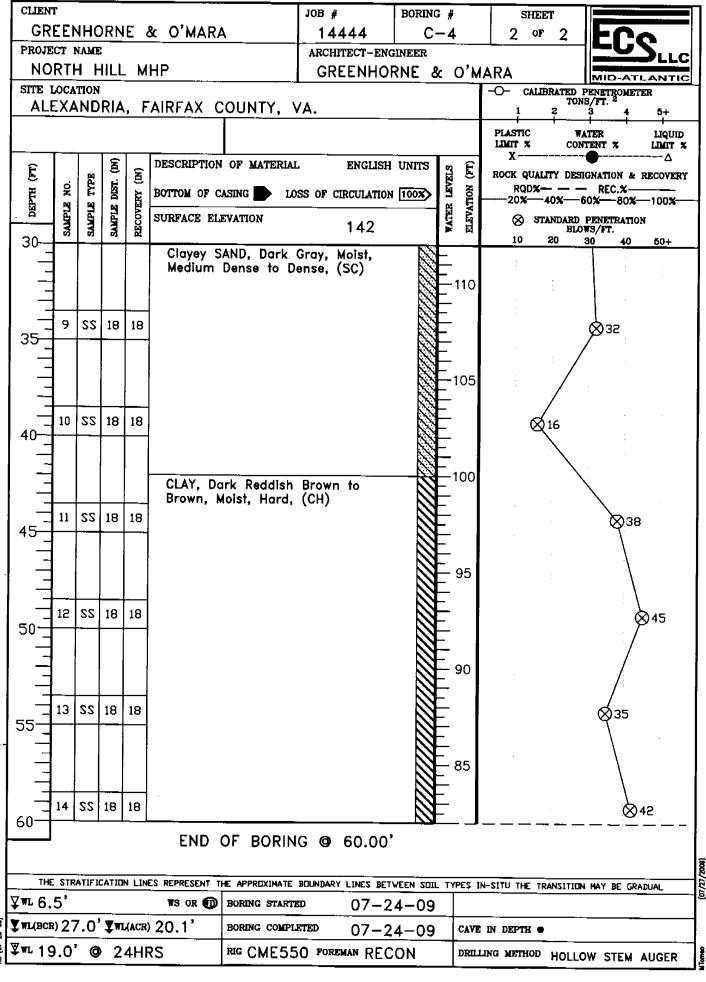

I:\Geotechnical\{eProjects}\14400-14499\01-14444\b-Drafting\14448L2.dwg, 10/14/2009 2:12:38 PM, ECS Mid-Atlantic, LLC. Chantilly, VA (00-16-00) RC (00-16-00) RC (06-21-00) RC (10-14-00) g

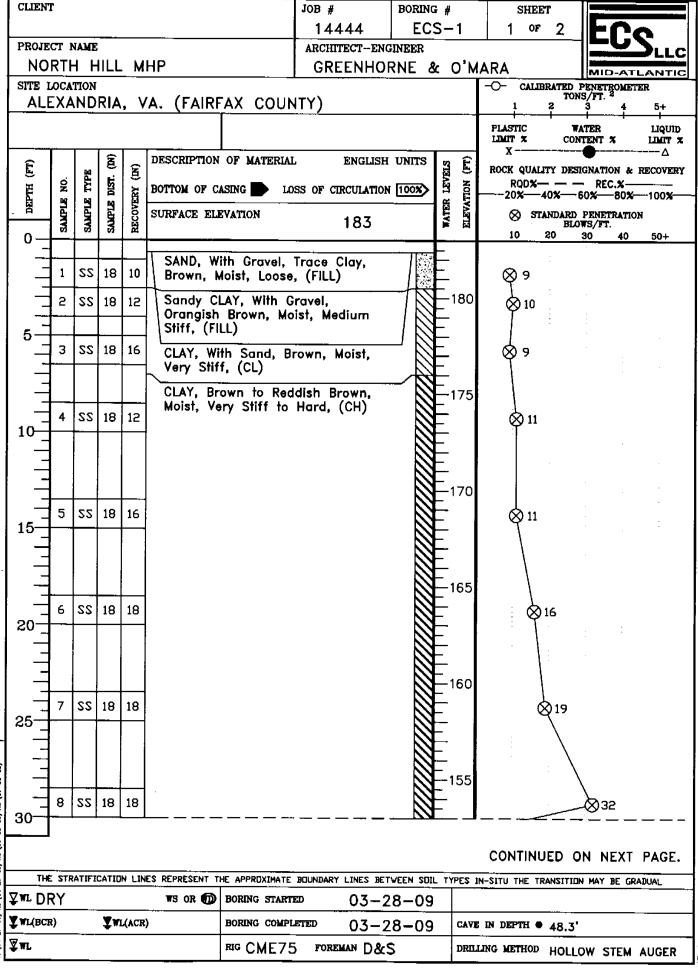

I:\Geotechnical\{eProjects}\14400-14499\01-14444\b-Drafting\14448L2.dwg,7/29/2009 1:45:33 PM, ECS Mid-Atlantic, LLC. Chantilly, VA. 8

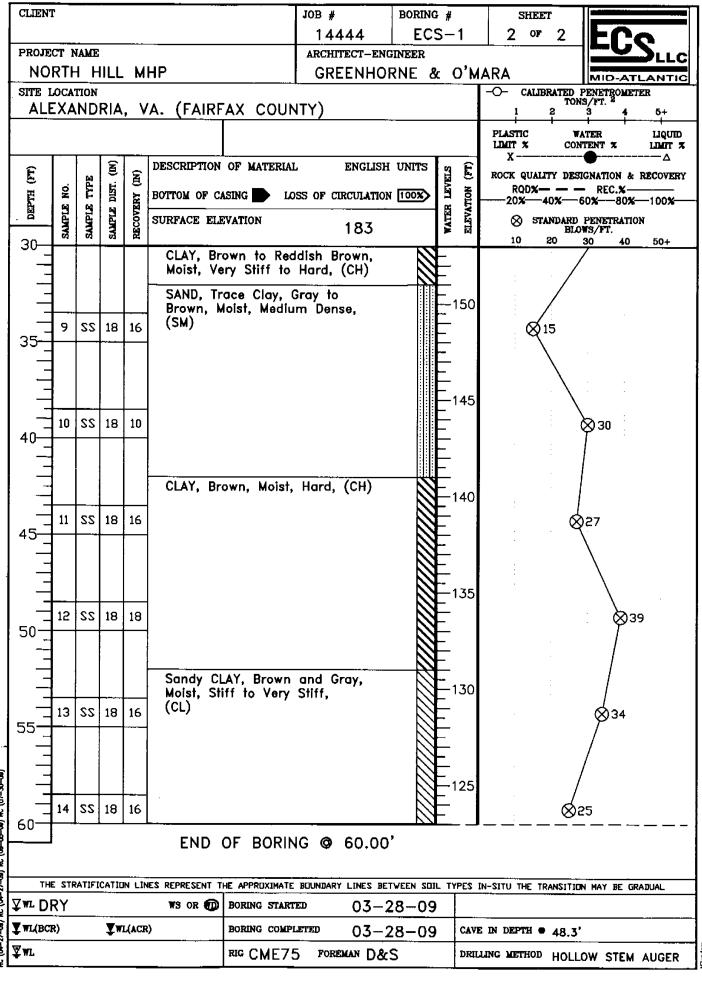

Neeotechnical\(eProjects)\14400-14499\01-14444\b-Drafting\14448L2.dwg. 7/29/2009 1:45:34 PM, ECS Mid-Atlantic, LLC. Chantilly, VA. c (n-3-c)

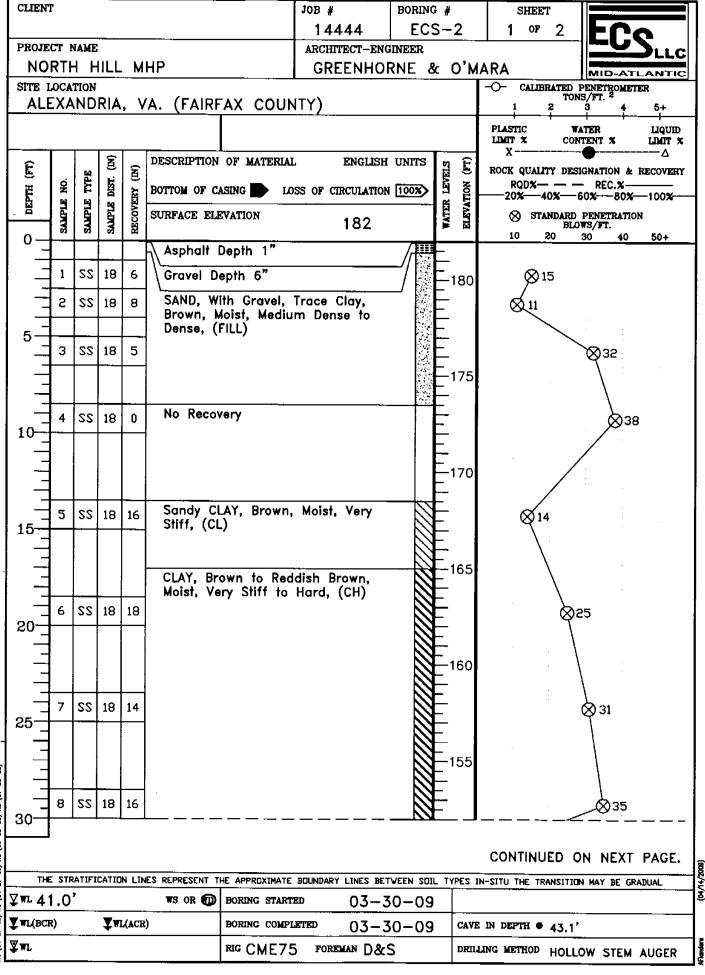

Veotechnical\(eProjects)\14400-14499\01-14444\b-Drafting\1444BL2.dwg, 7/29/2009 1:45:39 PM, ECS Mid-Atlantic, LLC. Chantilly, VA c (m-m-m) 8

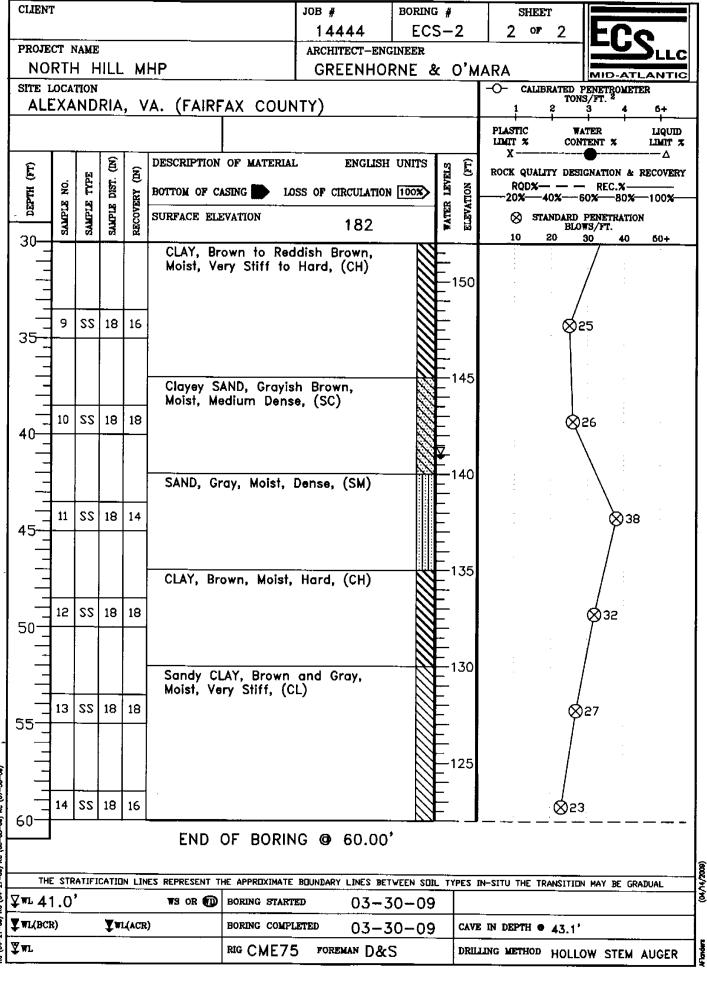

I:\Geotechnica\\{eProjects}\14400-14499\01-1444\b-Drafting\14448L2.dwg, 7/29/2009 1:45:41 PM, ECS Mid-Atlantic, LLC, Chantilly, VA.

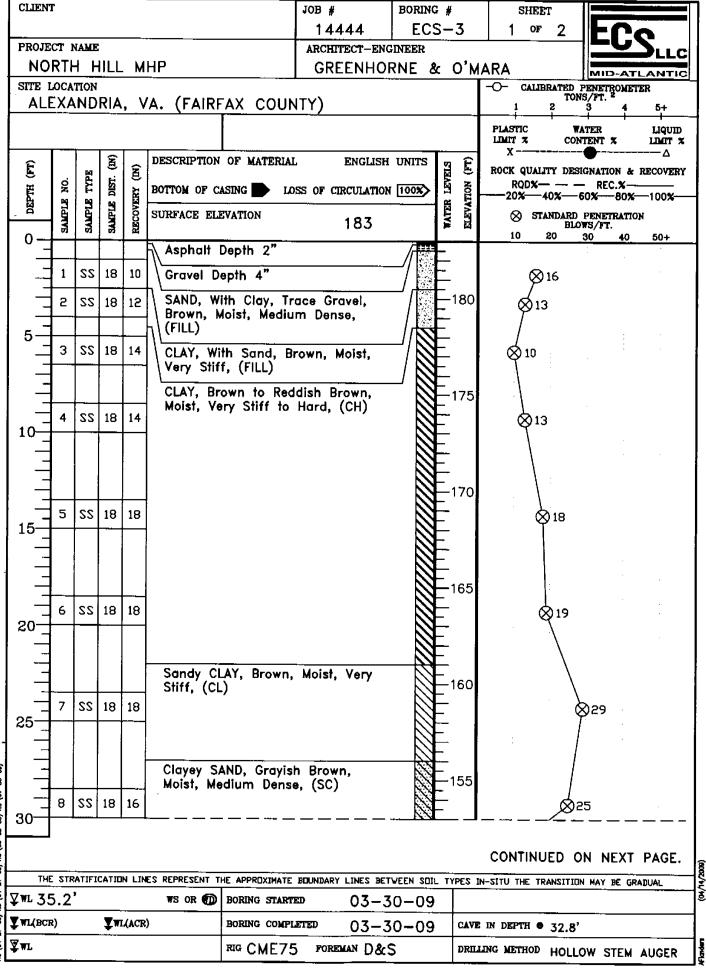

\Geotechnical\{eProjects}\14400-14499\01-1444\b-Drafting\1444BL2.dwg, 7/29/2009 1:45:43 PM, ECS Mid-Atlantic, LLC. Chantily, VA.

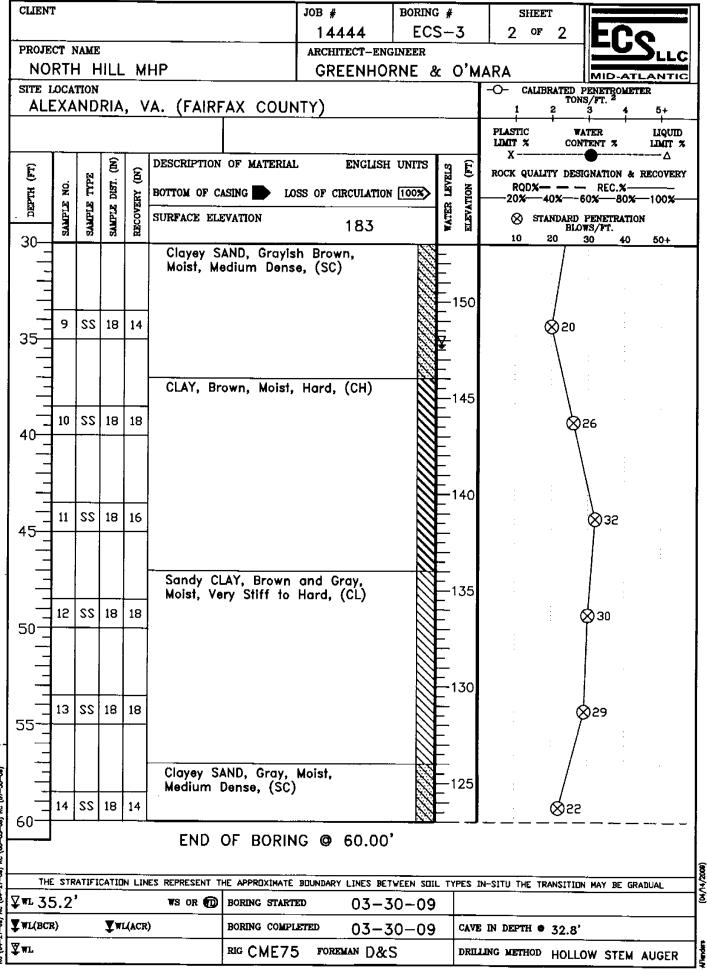

[:\Geotechnical\{eProjects}\14400-14499\01-14444\b-Drafting\14448L2.dwg,7/29/2009 1:45:45 PM, ECS Mid-Atlantic, LLC. Chantilly, VA. É

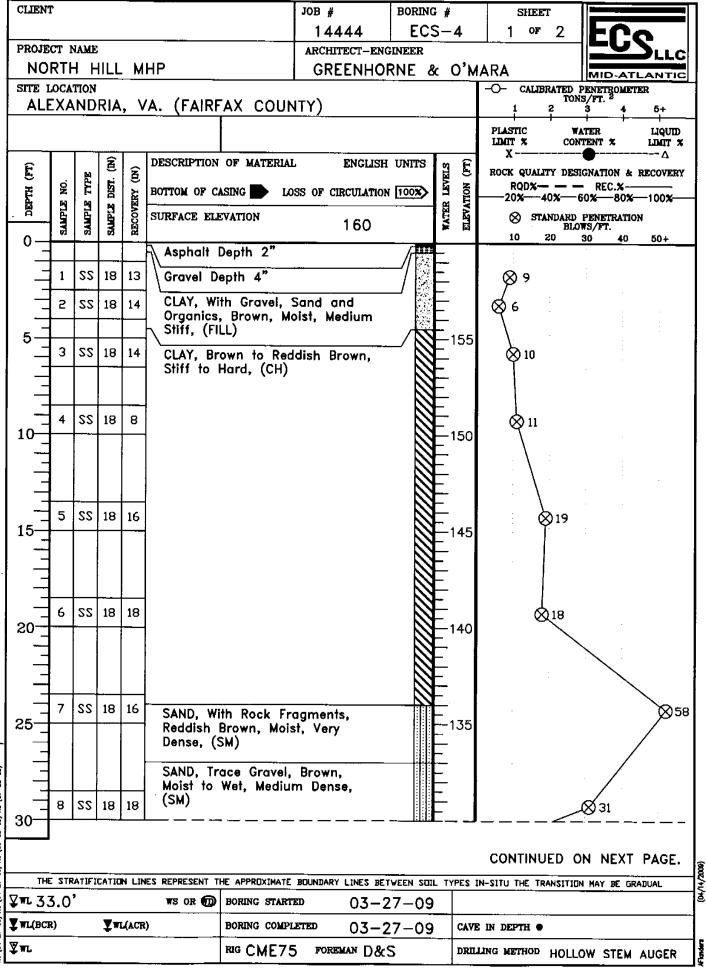

\Geotechnical\{eProjects}\14400-14499\01-14444\b-Drafting\14448L2.dwg, 7/29/2009 1:45:47 PM, ECS Mid-Atlantic, LLC. Chantilly, VA e (0-2-ce)

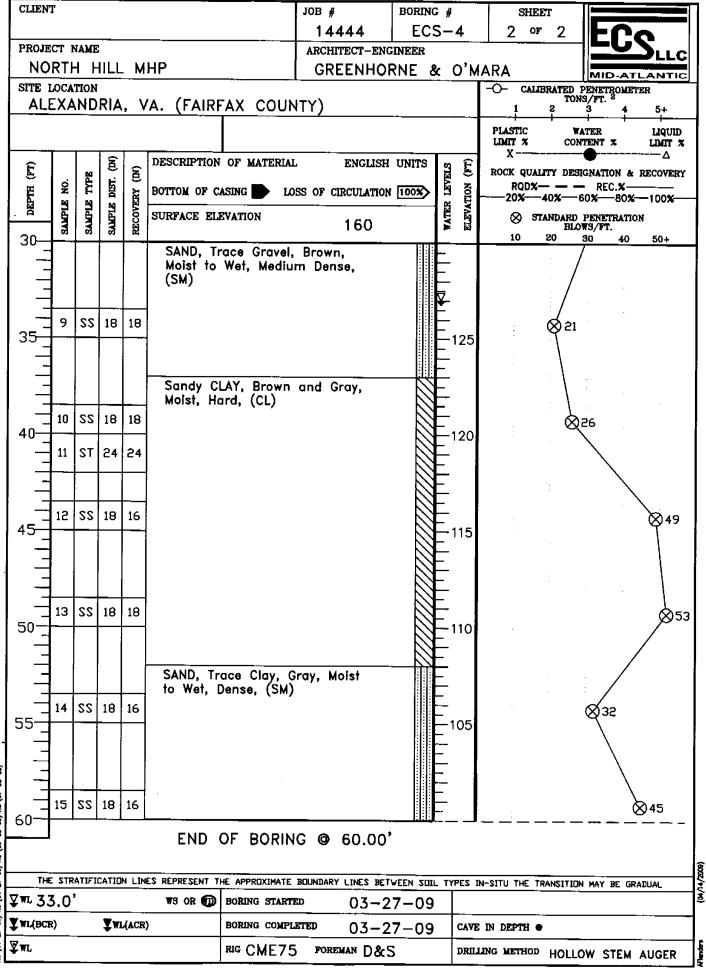

/Geotechnical\{eProjects}\14400-14499\01-14444\b-Drafting\14448L2.dwg, 7/29/2009 1:45:49 PM, ECS Mid-Atlantic, LLC. Chantilly, VA. Į

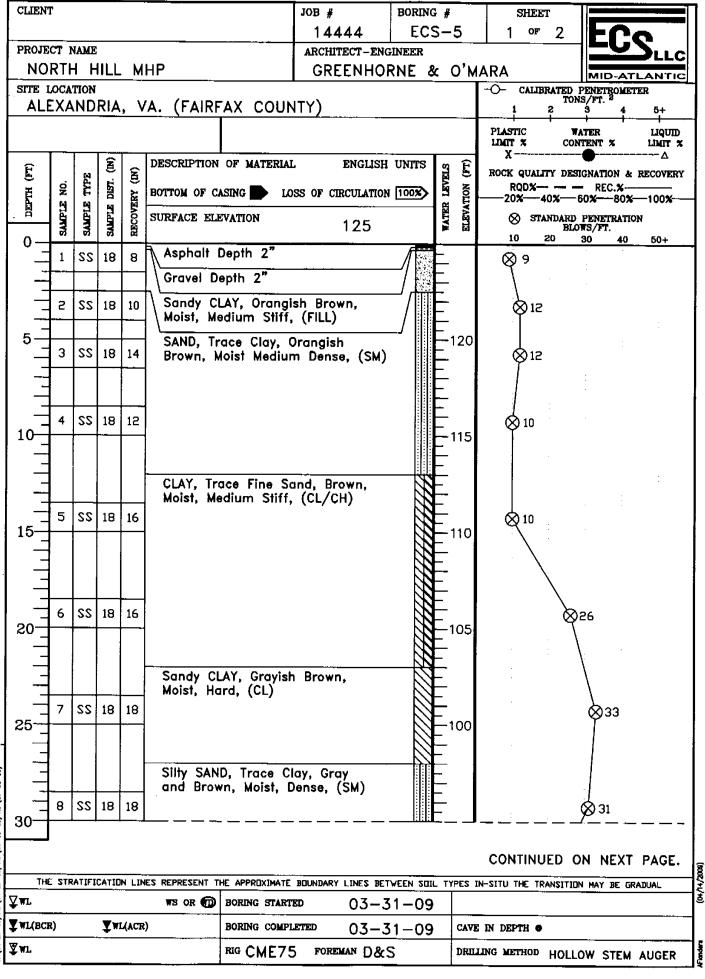

I:\Geotechnical\{eProjects}\14400-14499\01-1444\b-Drafting\1444BL.dwg, 7/30/2009 8:53:13 AM, ECS Mid-Atlantic, LLC. Chantilly, VA. Rc (w-27-00) Rc (w-27-00) Rc (m-30-00) Rc (m-30-00)

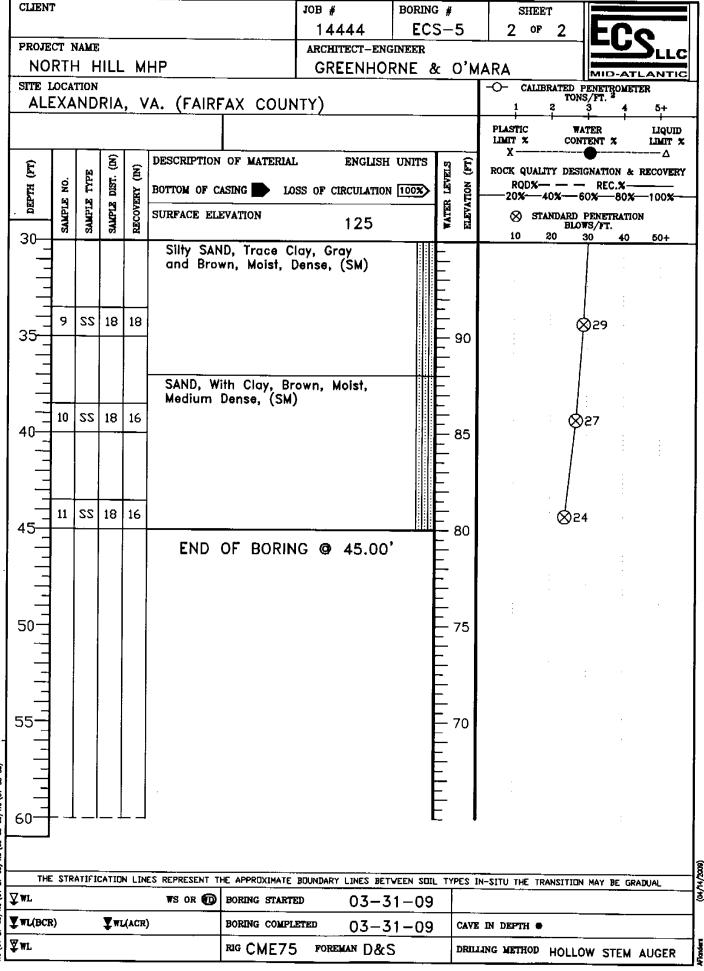

I:\Geotechnica(\{eProjects}\14400-14499\01-14444\b-Drafting\14444BL.dwg, 7/30/2009 8:53:15 AM, ECS Mid-Atlantic, LLC. Chantilly, VA m (h=21-a) m (n=21-a) m (n=a-a) m (n=21-a)

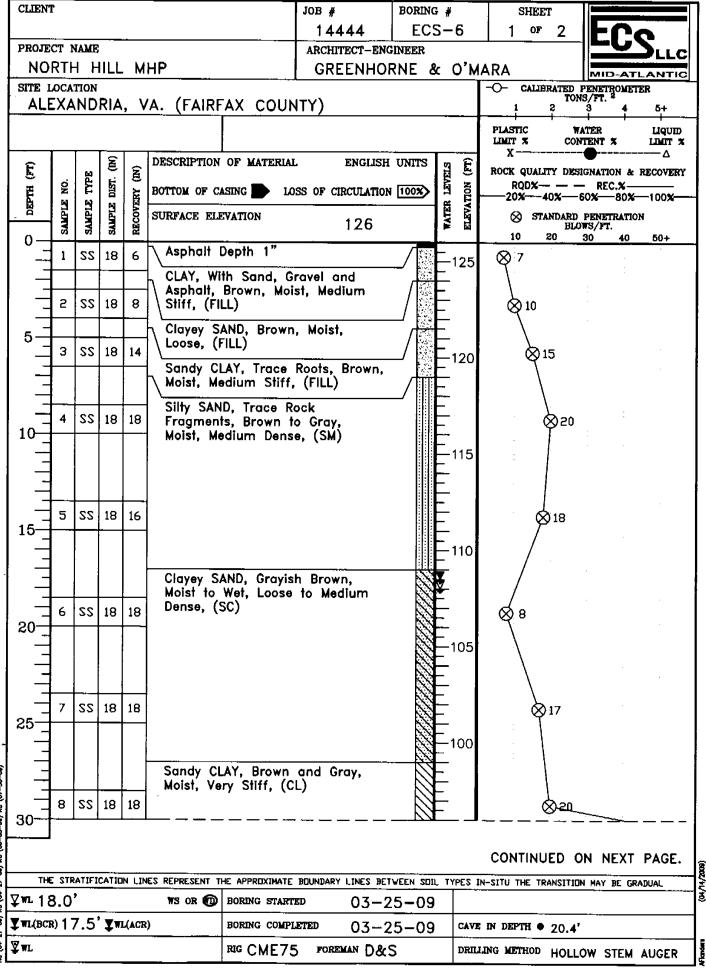

technical/(eProjects)/14400-14499/01-14444/b-Drafting/14448L.dwg, 7/30/2009 8:53:17 AM, ECS Mid-Atlantic, LLC. Chantilly, VA. 21-00) nc (n-27-00) nc (n-15-00) nc (n-13-00) (**ମ** I:\Geo1

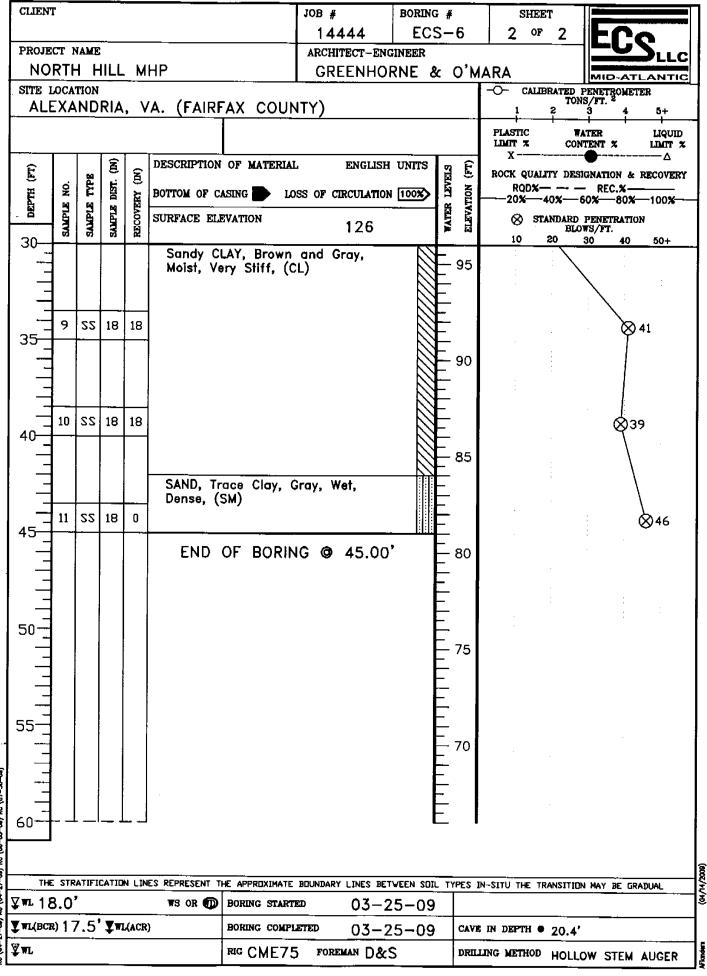

T:\Geotechnical\{eProjects}\14400-14499\01-1444\b-Drafting\1444BL.dwg, 7/30/2009 8:53:18 AM, ECS Mid-Atlantic, LLC. Chantilly, VA. Rc (M-27-00) Rc (M-27-00) Rc (07-50-00) Kc (07-50-00)

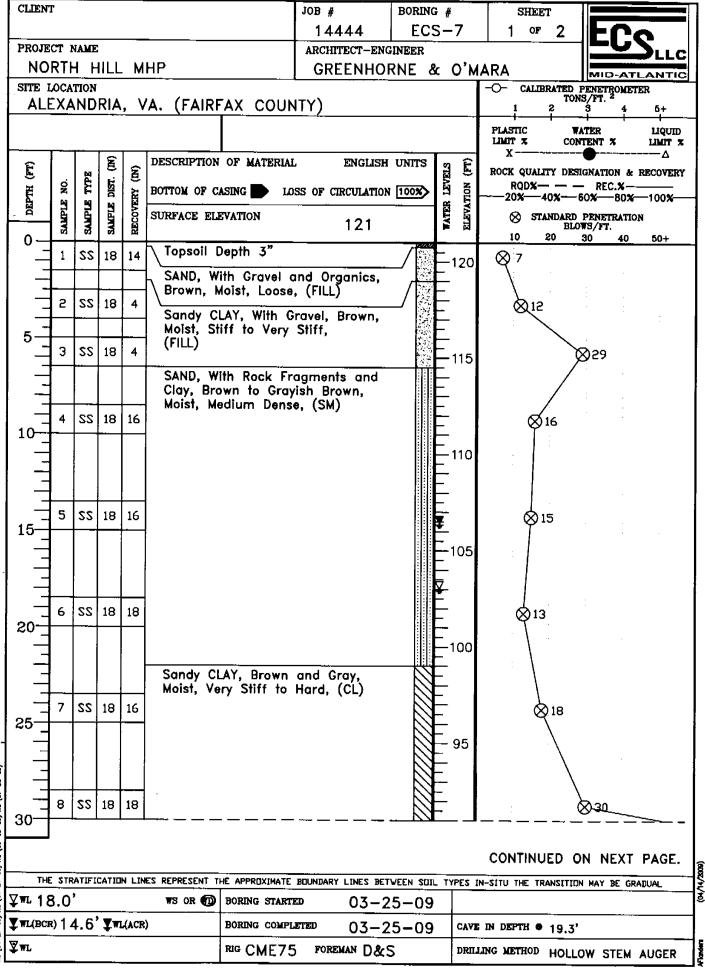

I:\Geotechnical\leProjects\\14400-14499\01-1444\b-Drafting\1444BL.dwg, 7/30/2009 8:53:20 AM, ECS Mid-Atlantic, LLC. Chantilly, VA Rc (0+27-08) Rc (0+27-08) Rc (07-35-08) Rc (07-35-08)

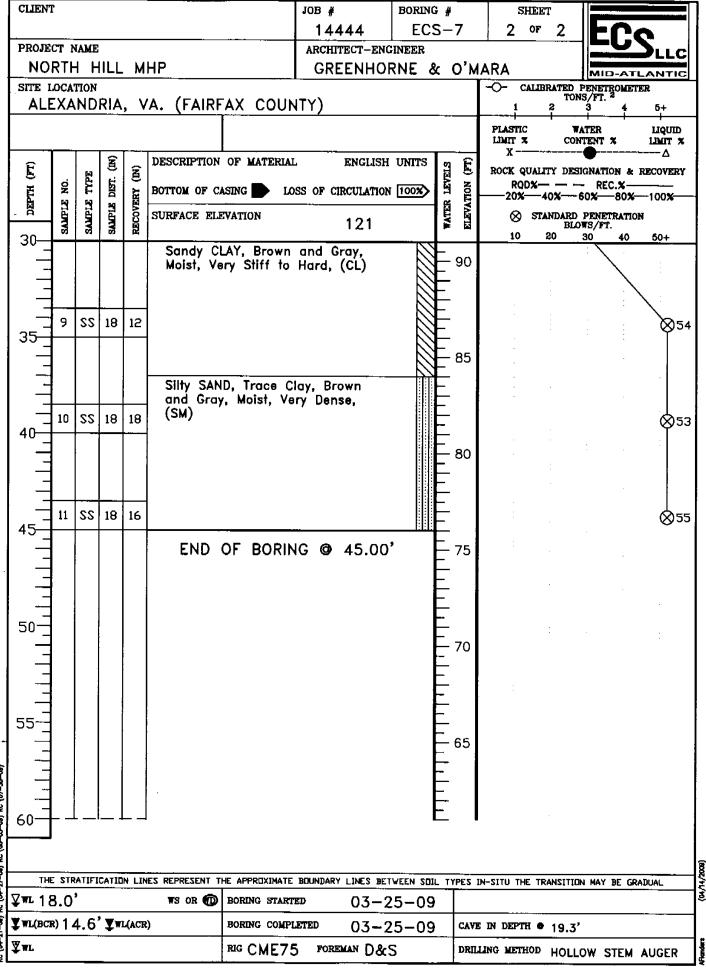

technical\{eProjects}\14400-14499\01-1444\b-Drafting\1444BL.dwg, 7/30/2009 8:53:22 AM, ECS Mid-Atlantic, LLC. Chantilly, VA 27-09, Rc (04-23-00) Rc (06-06-06) Rc (07-20-00) 寄る I:\Geo1

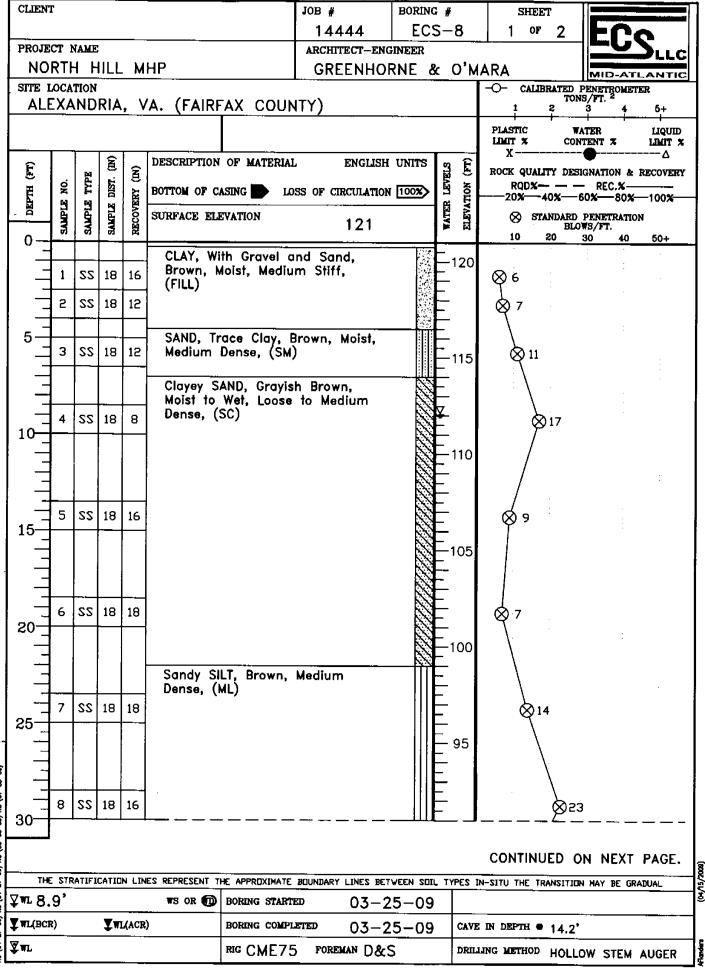

I:\Geotechnical\{eProjects}\14400-14499\01-1444\b-Drafting\1444BL.dwg, 7/30/2009 8:53:23 AM, ECS Mid-Atlantic, LLC. Chantilly, VA Rc (M-27-01) Rc (M-27-01) Rc (M-20-08) Rc (M-20-08)

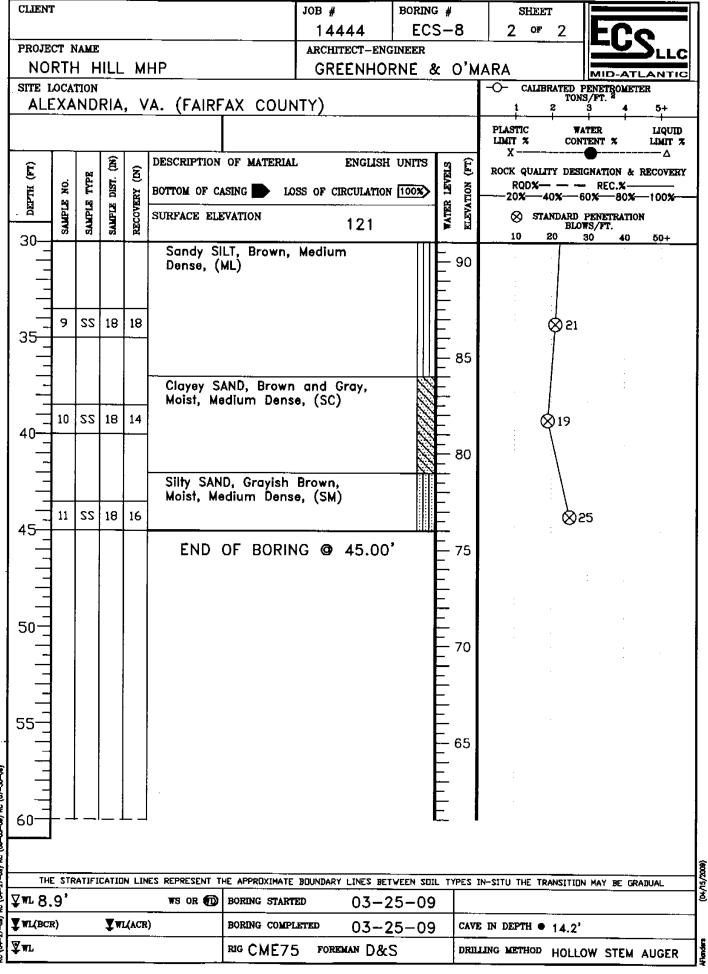

rechnical/(eProjects)/14400-14499/01-14444/b-Drafting/14448L.dwg, 7/30/2009 8:53:25 AM, ECS Mid-Atlantic, LLC. Chantilly, VA. 0-09) Rc (04-21-08) Rc (00-26-08) (9 2 2 2 \Geo1 ę


I:\Geotechnical\leProjects\\14400-14499\01-14444\b-Drafting\1444BL.dwg, 7/30/2009 B:53:26 AM, ECS Mid-Atlantic, LLC. Chantilly, VA. Rc (M-27-08) Rc (04-27-08) Rc (05-26-08) Rc (07-26-08) Rc (07-26-08) Rc (04-27-08) Rc (04-27-

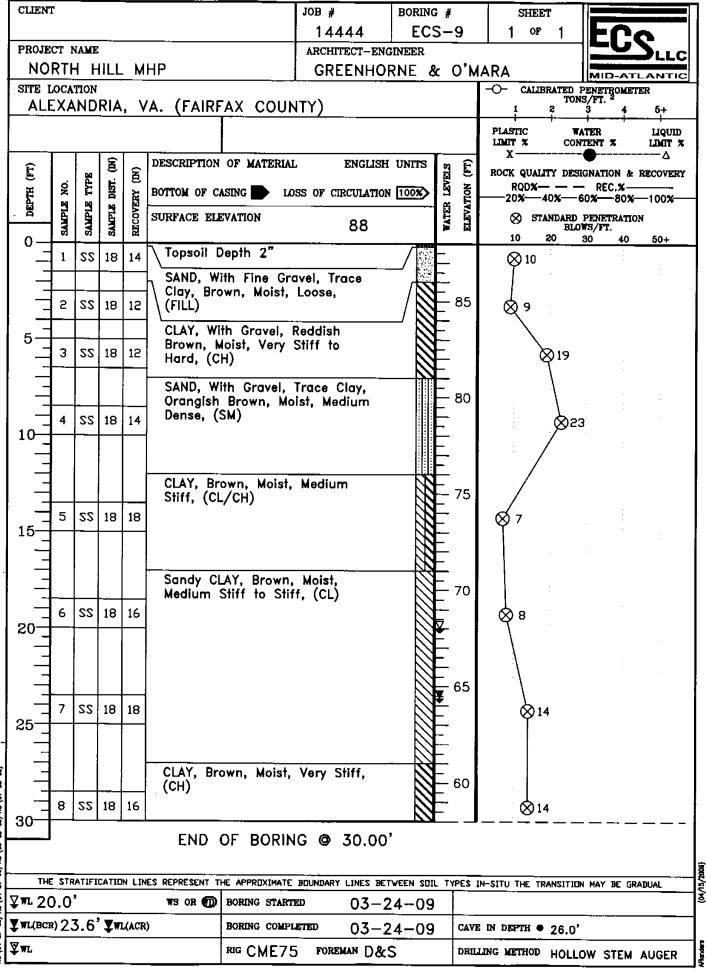

Veotechnical/(eProjects)/14400-14499/01-14444/b-Drafting/14448L.dwg, 7/30/2009 8:53:28 AM, ECS Mid-Atlantic, LLC. Chantilly, VA. c (n+21-08) nc (n+21-08) nc (n+28-08) nc (n+28-08) £


I:\Geatechnical\{eProjects}\14400-14499\01-14444\b-Drafting\1444BL.dwg, 7/30/2009 8:53:30 AM, ECS Mid-Atlantic, LLC. Chantilly, VA Rc (04-21-00) Rc (04-23-00) Rc (04-30-06) Rc (07-30-06)

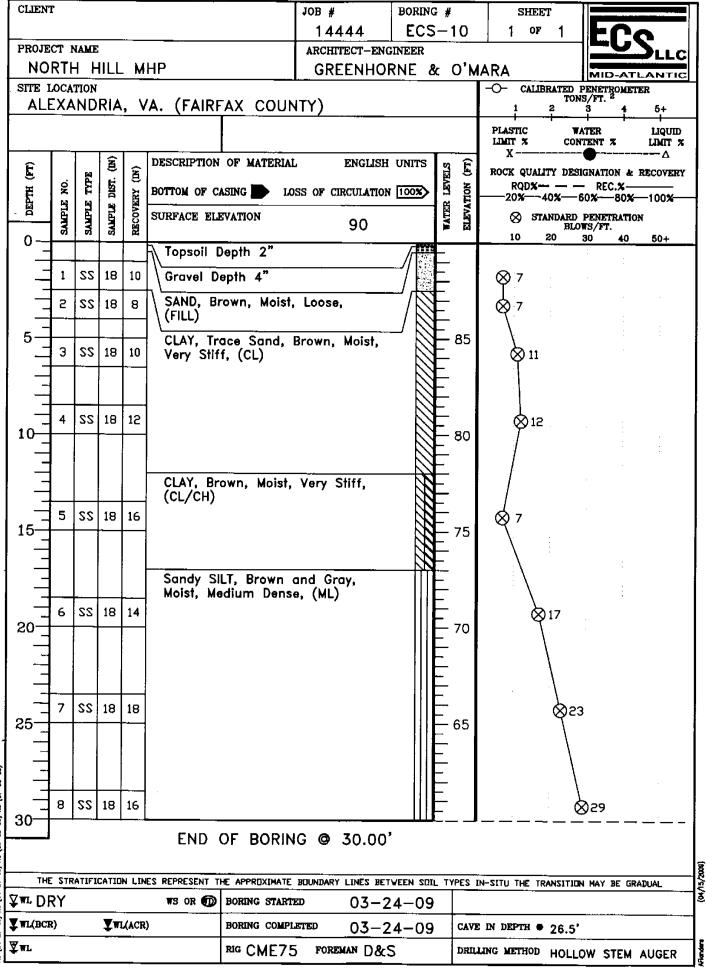

Veotechnical/(eProjects)/14400-14499/01-14444/b-Drafting/14448L.dwg, 7/30/2009 8:53:31 AM, ECS Mid-Atlantic, LLC. Chantilly, VA, c (4-27-08) Rc (4-27-08) Rc (40-55-08) Rc (47-50-08) 힘


technical\{eProjects}\14400-14499\01-1444\b-Drafting\1444BL.dwg, 7/30/2009 B:53:33 AM, ECS Mid-Atlantic, LLC. Chantilly, VA 21-01) Rc (04-23-08) Rc (05-35-08) Rc (07-20-08) VGeot

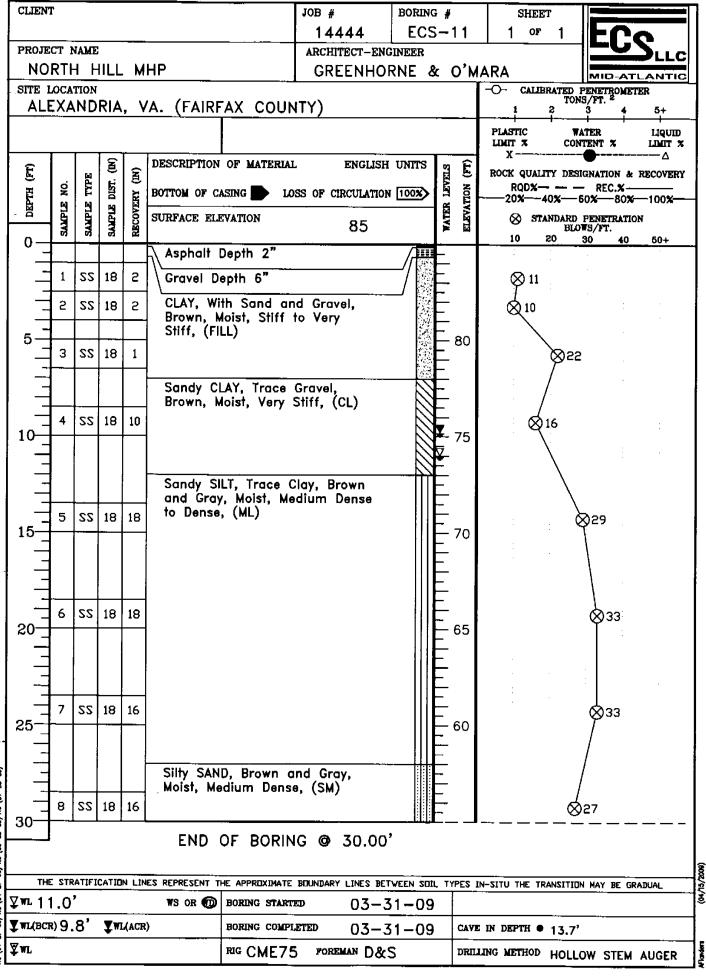
I:\Geotechnical\{eProjects}\14400-14499\01-14444\b-Drafting\1444BL.dwg, 7/30/2009 8:53:35 AM, ECS Mid-Atlantic, LLC. Chantilly, VA Rc (M-21-00) Rc (M-21-00) Rc (M-06-00) Rc (M-20-00)

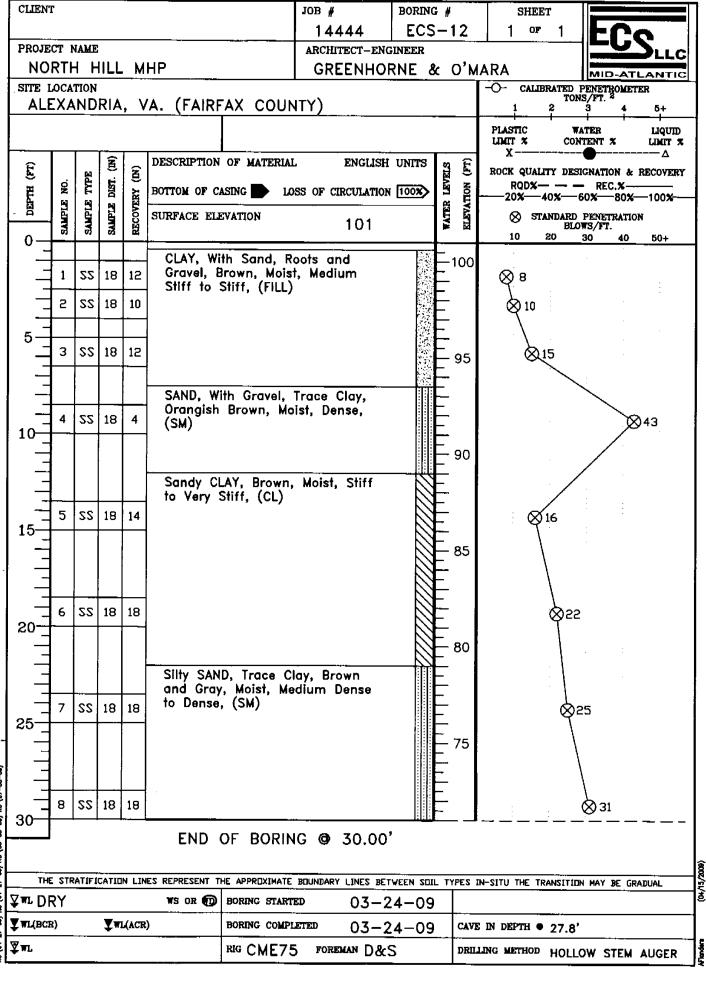


\Geotechnica\\{eProjects}\14400-14499\01-1444\b-Drafting\1444&Ldwg, 7/30/2009 &53:36 AM, ECS Mid-Atlantic, LLC. Chantilly, VA <u>c (4-27-00) m (4-27-00) m (04-25-00) m (</u>3-3-00) ē



/Geotechnical/(eProjects)/14400-14499/01-14444/b-Drafting/14448L.dwg, 7/30/2009 8:53:38 AM, ECS Mid-Atlantic, LLC. Chantilly, VA. c (4-23-48) fc (4-23-48) fc (16-56-48) fc (17-30-48) ž


ž


I:\Geotechnical\(eProjects)\14400-14499\01-1444\b-Drafting\1444BL.dwg, 7/30/2009 8:53:39 AM, ECS Mid-Atlantic, LLC. Chantilly, VA Rc (M=27-08) Rc (M=27-08) Rc (07-20-08) Rc (07-20-08)

technical\(eProjects)\14400-14499\01-1444\b-Drafting\1444BL.dwg,7/30/2009 8:53:41 AM, ECS Mid-Atlantic, LLC. Chantilly, VA 7-a) m (a+-21-a) m (a+-25-a) m (a-25-a) (**10**-10) -7-100 1Geot ġ 윮 Ĥ

I:\Geotechnical\{eProjects}\14400-14499\01-14444\b-Drafting\1444BL.dwg, 7/30/2009 8:53:43 AM, ECS Mid-Atlantic, LLC. Chantilly, VA nc (n-27-a) nc (n-27-a) nc (n-26-a) nc (n7-20-a) nc (n7-20-a) nc (n7-20-a) nc (n4-20-a) nc

I:\Geotechnical\{eProjects}\14400-14499\01-14444\b-Drafting\1444BL,dwg,7/30/2009 8:53:44 AM, ECS Mid-Atlantic, LLC. Chantilly, VA Rc (04-27-00) Rc (04-27-00) Rc (07-35-06) Rc (07-35-06)

Appendix C – Laboratory Test Results

Engineering Consulting Services Mid-Atlantic, LLC

Chantilly, Virginia Laboratory Testing Summary

Date: 4/27/09

Project Number: 14444

Project Name: North Hill Property MHP

Project Engineer: MET

Principal Engineer: JCG

Summary By: HNT1

												
		_						Percent				
Boring	Sample	Depth	Moisture				Plasticity	Passing		Optimum		Other
Number	Number	(feet)	Content	USCS	Limit	Limit	Index	No. 200	-	Moisture	Value	
			(%)					Sieve	(pcf)	(%)		
ECS-1	Tube	11.0 - 13.0		СН	60	28	32	92.8				
ECS-2	S-7	23.5 - 25.0	25.6	СН	68	24	44	96.4				
ECS-3	S-4	8.5 - 10.0	26.8	СН	66	21	45	86.1				
ECS-5	Tube	15.0 - 17.0		СН	66	28	38	92.0				
ECS-7	S-8	28.5 - 30.0	32.0	MH	55	32	23	89.7				
ECS-8	S-7	23.5 - 25.0	31.5	SM	44	28	16	39.4				
ECS-9	S-8	28.5 - 30.0	24.6	CL	46	23	23	58.4				
ECS-10	S-5	13.5 - 15.0	26.6	СН	58	22	36	64.6				
ECS-12	S-6	18.5 - 20.0	29.1	MH	55	32	23	95.6				
ECS-1	Bag	0.0 - 10.0	12.5	СН	50	17	33	64.1	114.3	14.3	7.3	
ECS-5	Bag	0.0 - 10.0	11.4	SC	47	20	27	46.1	106.2	17.1	8.7	
C-1	S-3	6.0 - 8.0		SM	76	41	35	26.0				
C-4	Bag	8.0 - 10.0		SM	52	28	24	19.5				

Summary Key:

SA = See Attached S = Standard Proctor M= Modified Proctor V = Virginia Test Method OC = Organic Content Hyd = Hydrometer Con = Consolidation DS = Direct Shear GS = Specific Gravity UCS = Unconfined Compression Soil UCR = Unconfined Compression Rock LS = Lime Stabilization CS = Cement Stabilization

NP = Non Plastic

Engineering Consulting Services Mid-Atlantic, LLC

Chantilly, Virginia Laboratory Testing Summary

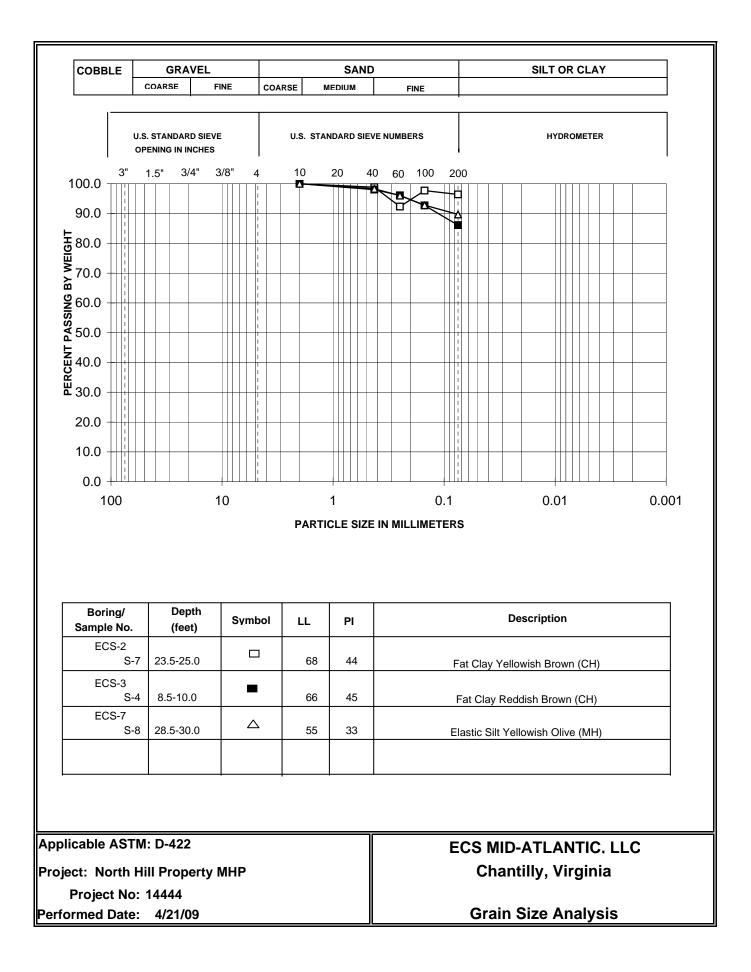
Date: 7/30/09

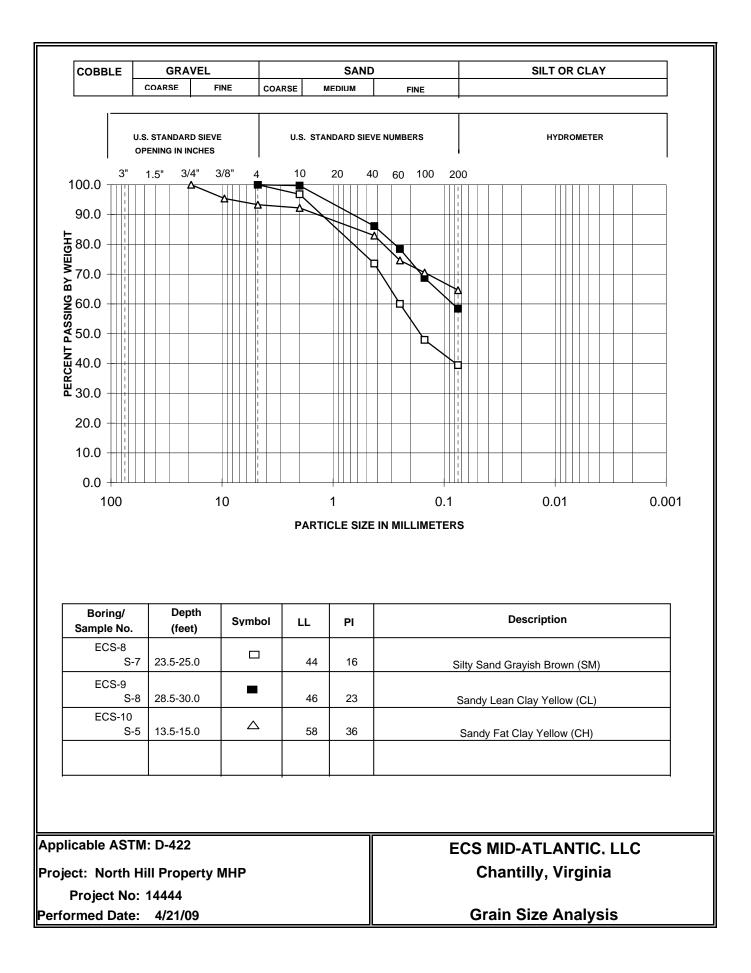
Project Number: 14444

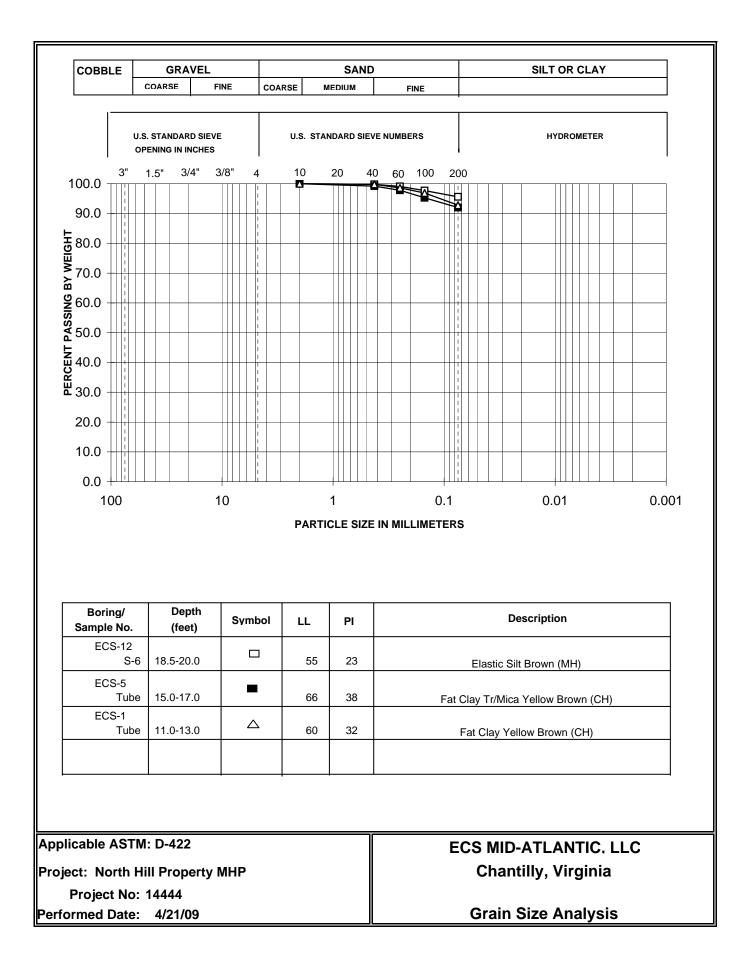
Project Name: North Hill Property MHP

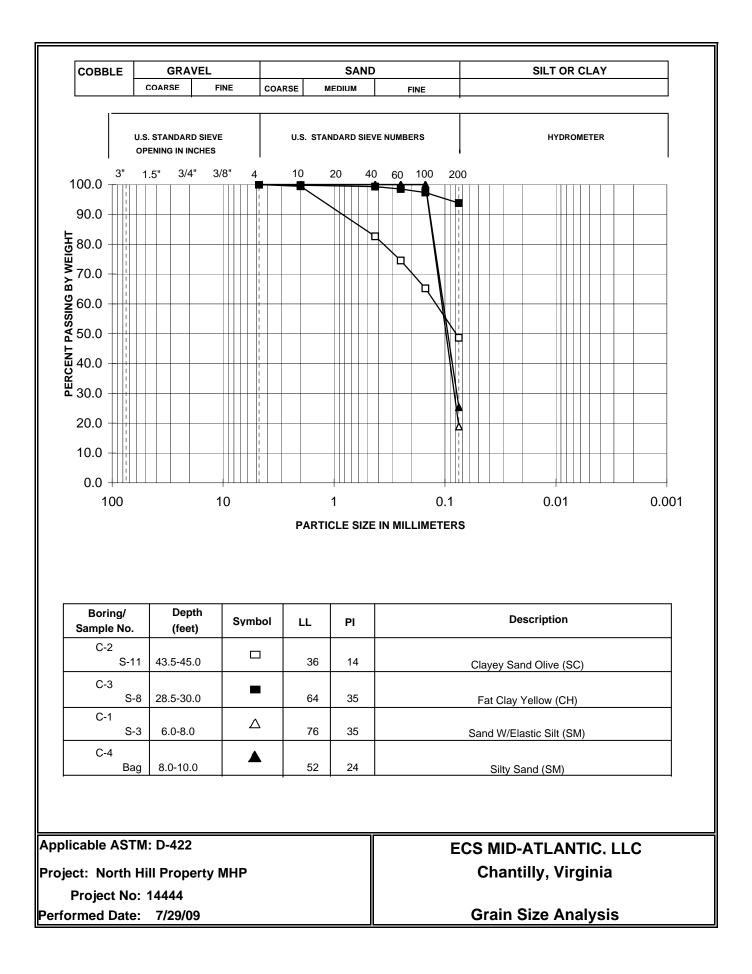
Project Engineer: MET

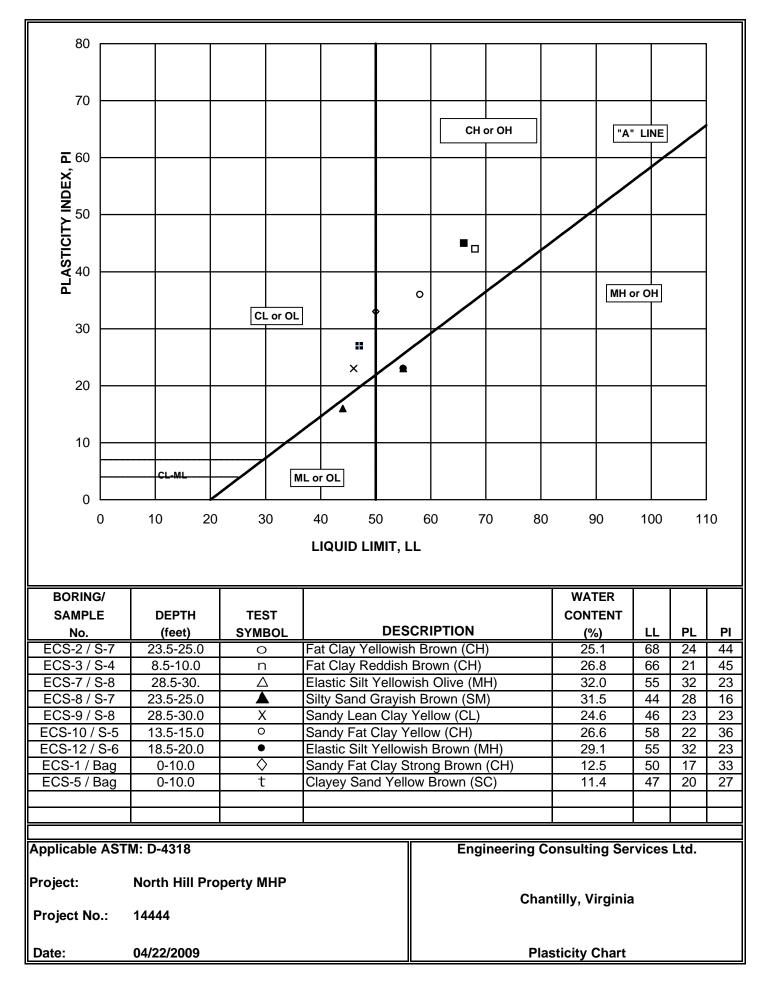
Principal Engineer: JCG


Summary By: HNT1

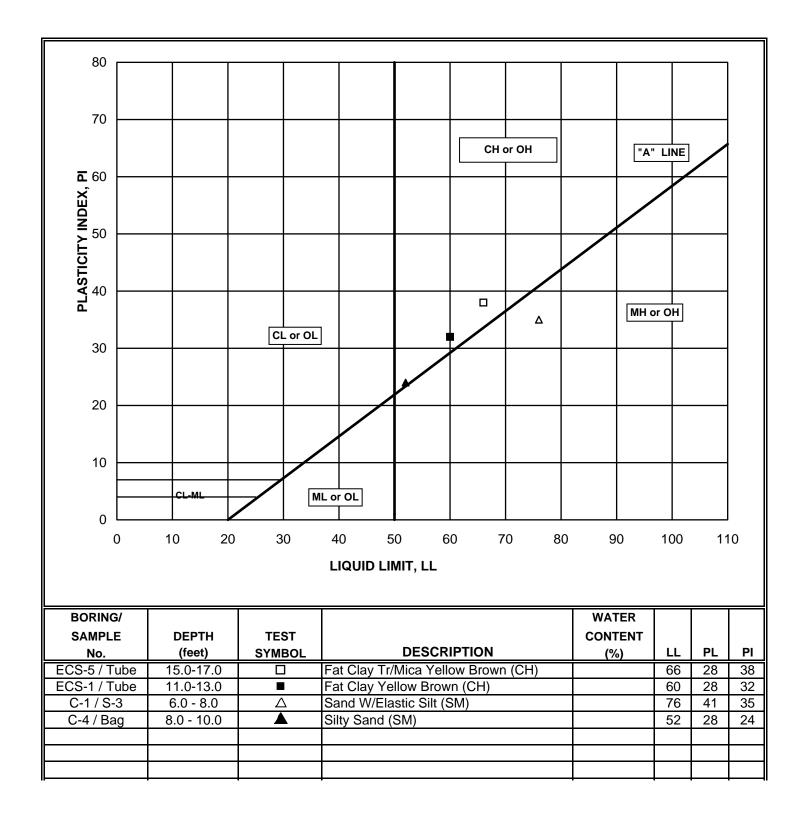

Boring Number	Sample Number	Depth (feet)	Moisture Content (%)	USCS	Liquid Limit		Plasticity Index	Percent Passing No. 200 Sieve	Maximum	action Optimum Moisture (%)	Other
C-1	S-8	28.5 - 30.0	23.1								
C-2	S-4	8.5 - 10.0	8.8								
C-2	S-11	43.5 - 45.0	30.1	SC	36	22	14	48.4			
C-3	S-8	28.5 - 30.0	30.0	СН	64	29	35	93.7			
C-3	S-13	53.5 - 55.0	34.2								
C-4	S-7	23.5 - 25.0	25.1								


Summary Key:


SA = See Attached S = Standard Proctor M= Modified Proctor V = Virginia Test Method OC = Organic Content Hyd = Hydrometer Con = Consolidation DS = Direct Shear GS = Specific Gravity UCS = Unconfined Compression Soil UCR = Unconfined Compression Rock LS = Lime Stabilization CS = Cement Stabilization


NP = Non Plastic





Engineering Consulting Services Mid-Atlantic, LLC Chantilly, Virginia

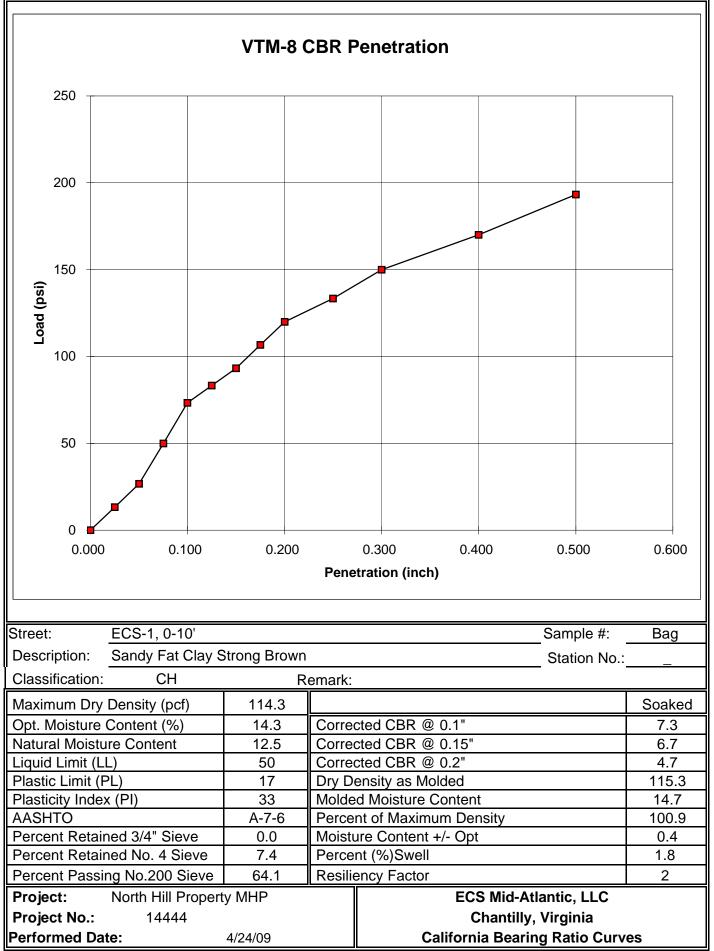
VTM-8 TESTING SUMMARY

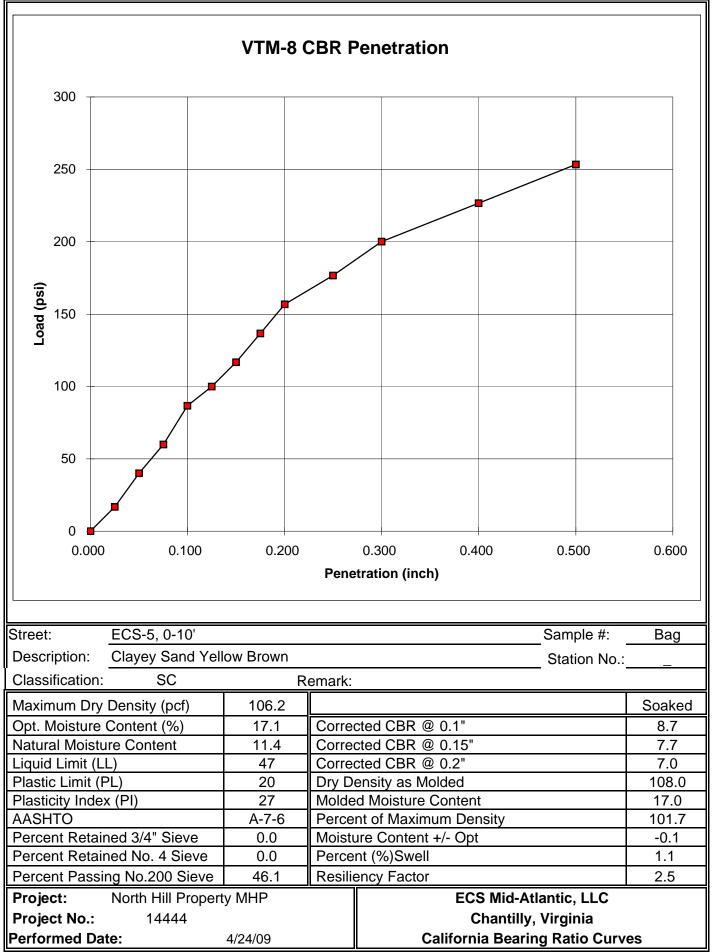
Project Name: North Hill Property MHP Project Number: 14444 Completed Date: 4/29/09 Performed Date: 4/24/09 Project Engineer: MET Summary By: HNT1

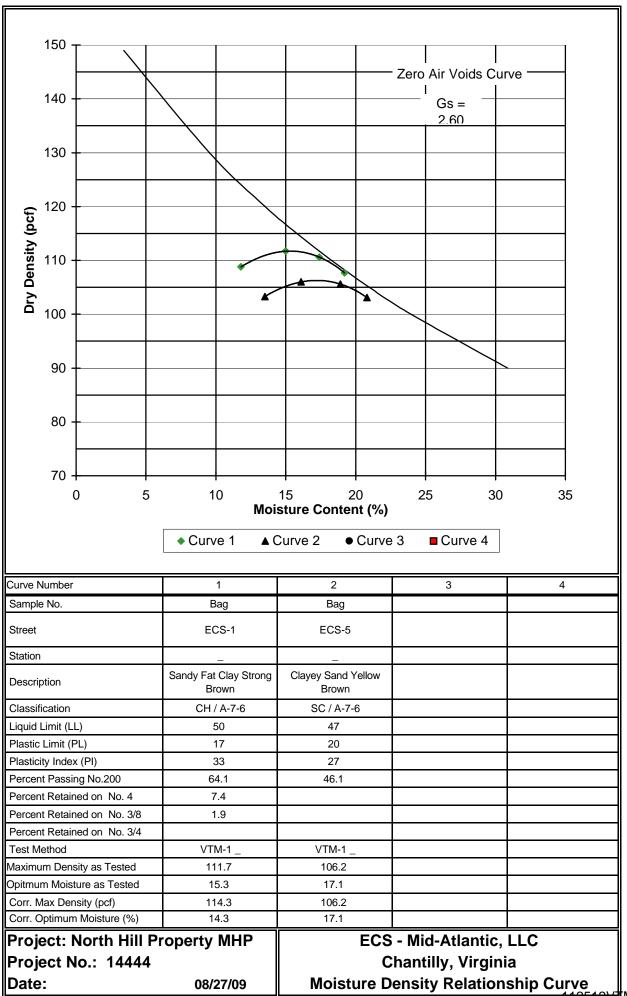
Street: Bag

Station	Soil				Corrected	Corrected	Percent		Final		Sample
Number	Description	Classification		Resiliency	Max. Dry	Optimum	Compaction	CBR	Moisture	Percent	No.
		USCS	AASHTO	Factor	Density(pcf)	M/C (%)		Soaked	Soaked (%)	Swell	
ECS-1	Sandy Fat Clay Strong Brown	CH	A-7-6	2.0	114.3	14.3	100.9	7.3	23.0	1.8	Bag
ECS-5	Clayey Sand Yellow Brown	SC	A-7-6	2.5	106.2	17.1	101.7	8.7	25.9	1.1	Bag

Average Laboratory CBR = 8.0

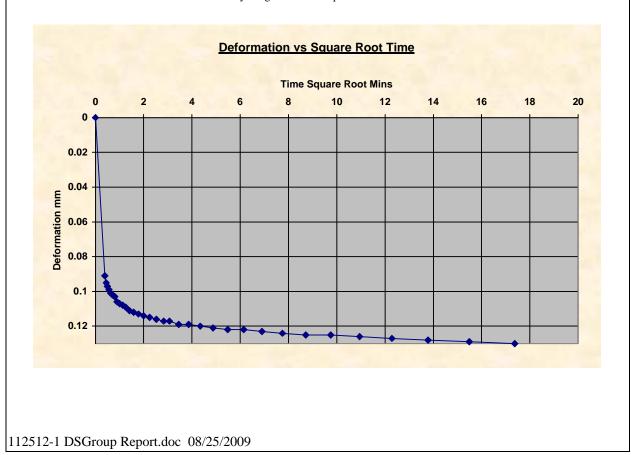

Design CBR Value (VDOT) = 5.3


Mica Content = None


Resiliency Factor = 2

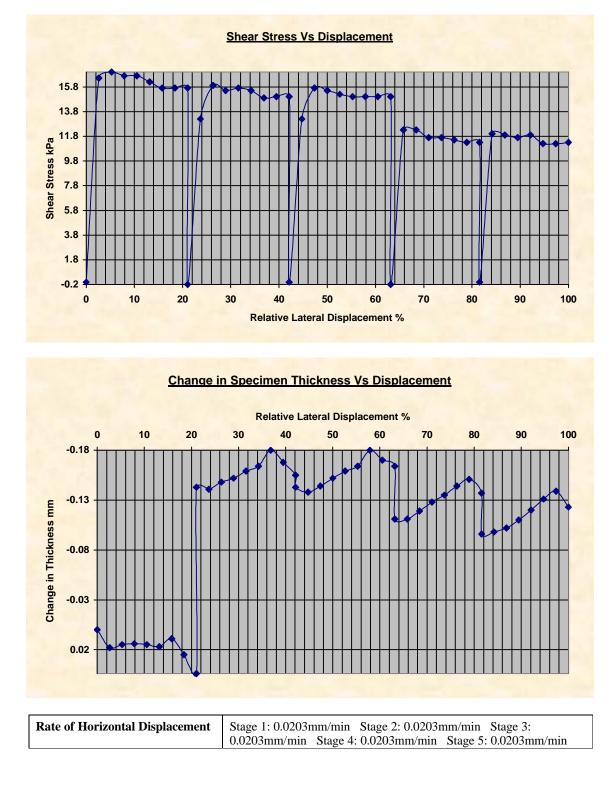
Stabilization Required = No

Principal Engineer: JCG


2512V∎M1.xls

Client	Greenhorne & O'Mara, Inc.	Lab Ref	0.5 tsf
Project	North Hill Property MHP	Job	14444
Borehole	ECS-5	Sample	112512-1

	Test Details		
Standard	ASTM D3080-03 / AASHTO T236-92	Particle Specific Gravity	2.65
Sample Type	Undisturbed sample - open drive	Single or Multi Stage	Multi Stage : 5 Stages
Lab. Temperature	23.0 deg.C	Location	ECS-5 15.0-17.0
Sample Description	Fat Clay Tr/Mica Yellow Brown(CH)		
Variations from procedure	None		


Specimen Details			
Specimen Reference	А	Description	Fat Clay Tr/Mica
-	/ \		Yellow Brown(CH)
Depth within Sample	0.00mm	Orientation within Sample	
Initial Height	19.810 mm	Area	3167.74 mm2
Structure / Preparation	HNT	Initial Water Content*	33.9 %
			(trimmings: 35.3 %)
Initial Wet Unit Weight	17.48 kN/m3	Degree of Saturation	90.67 %
Initial Dry Unit Weight	13.05 kN/m3	Initial Voids Ratio	0.992
Final Wet Unit Weight	18.24 kN/m3	Final Water Content	39.14%
Final Dry Unit Weight	13.11 kN/m3	Dry Mass	83.50 g
Tested Dry or Submerged	Submerged		
Comments			

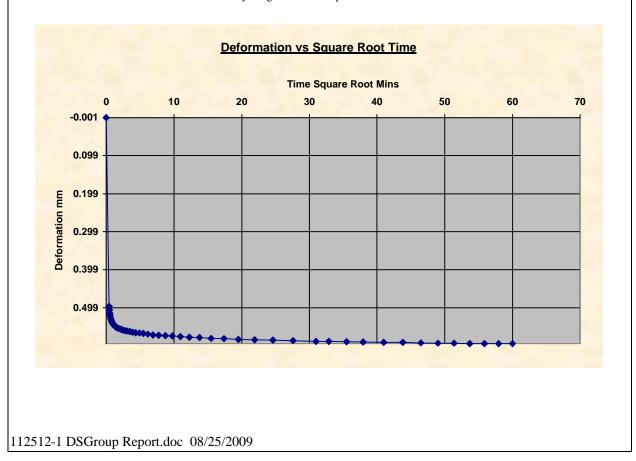
* Calculated from initial and dry weights of whole specimen

Client	Greenhorne & O'Mara, Inc.	Lab Ref	0.5 tsf
Project	North Hill Property MHP	Job	14444
Borehole	ECS-5	Sample	112512-1

112512-1 DSGroup Report.doc 08/25/2009

Client	Greenhorne & O'Mara, Inc.	Lab Ref	0.5 tsf
Project	North Hill Property MHP	Job	14444
Borehole	ECS-5	Sample	112512-1

Conditions at Failure	
Normal Stress	47.9 kPa
Peak Strength	17.0 kPa
Horizontal Deformation	2.402 mm
Residual Stress	11.3 kPa
Vertical Deformation	0.157 mm


Tested By and Date:	4/24/09
Checked By and Date:	5/24/09
Approved By and Date:	5/25/09


Client	Greenhorne & O'Mara, Inc.	Lab Ref	1.0 tsf
Project	North Hill Property MHP	Job	14444
Borehole	ECS-5	Sample	112512-1

Test Details			
Standard	ASTM D3080-03 / AASHTO T236-92	Particle Specific Gravity	2.65
Sample Type	Undisturbed sample - open drive	Single or Multi Stage	Multi Stage : 5 Stages
Lab. Temperature	23.0 deg.C	Location	ECS-5 15.0-17.0
Sample Description	Fat Clay Tr/Mica Yellow Brown(CH)		
Variations from procedure	None		

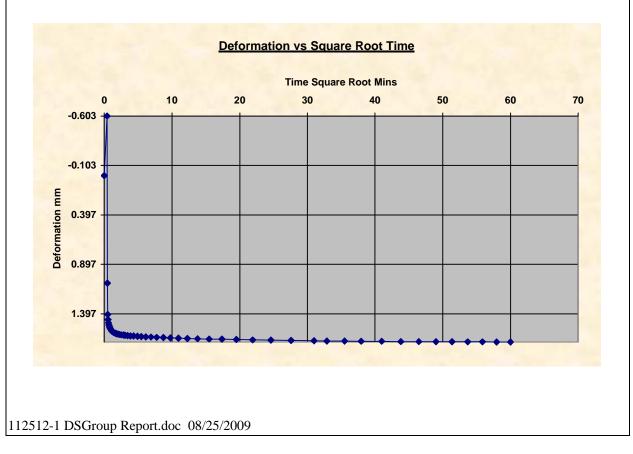
	Specimen Details			
Specimen Reference	В	Description	Fat Clay Tr/Mica	
•	U	_	Yellow Brown(CH)	
Depth within Sample	0.00mm	Orientation within Sample		
Initial Height	19.810 mm	Area	3167.74 mm2	
Structure / Preparation	HNT 5/1/09	Initial Water Content*	34.8 %	
			(trimmings: 33.7 %)	
Initial Wet Unit Weight	17.71 kN/m3	Degree of Saturation	94.22 %	
Initial Dry Unit Weight	13.13 kN/m3	Initial Voids Ratio	0.980	
Final Wet Unit Weight	18.14 kN/m3	Final Water Content	40.30%	
Final Dry Unit Weight	12.93 kN/m3	Dry Mass	84.00 g	
Tested Dry or Submerged	Submerged			
Comments				

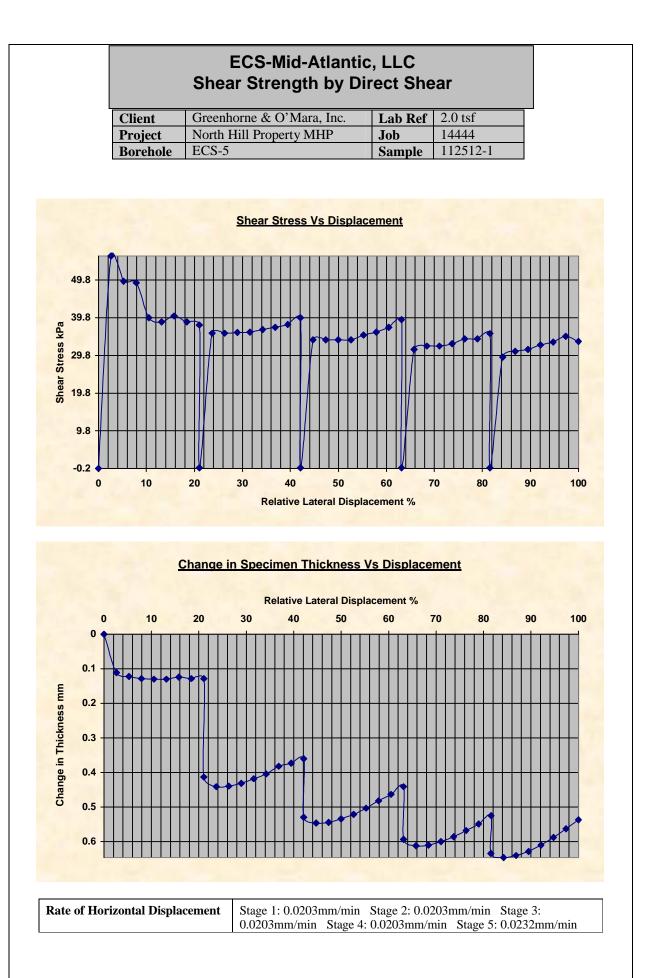
* Calculated from initial and dry weights of whole specimen

112512-1 DSGroup Report.doc 08/25/2009

Client	Greenhorne & O'Mara, Inc.	Lab Ref	1.0 tsf
Project	North Hill Property MHP	Job	14444
Borehole	ECS-5	Sample	112512-1

Conditions at Failure	
Normal Stress 95.8 kPa	
Peak Strength	30.2 kPa
Horizontal Deformation 1.199 mm	
Residual Stress	18.4 kPa
Vertical Deformation	0.655 mm


Tested By and Date:	5/1/09
Checked By and Date:	5/11/09
Approved By and Date:	MET


Client	Greenhorne & O'Mara, Inc.	Lab Ref	2.0 tsf
Project	North Hill Property MHP	Job	14444
Borehole	ECS-5	Sample	112512-1

Test Details					
StandardASTM D3080-03 / AASHTO T236-92Particle Specific Gravity2.65					
Sample Type	Undisturbed sample - open drive	Single or Multi Stage	Multi Stage : 5 Stages		
Lab. Temperature	23.0 deg.C	Location	ECS-5 15.0-17.0		
Sample Description	nple Description Fat Clay Tr/Mica Yellow Brown(CH)				
Variations from procedure	None				

Specimen Details			
Specimen Reference	С	Description	Fat Clay Tr/Mica
•	U		Yellow Brown(CH)
Depth within Sample	0.00mm	Orientation within Sample	
Initial Height	19.810 mm	Area	3167.74 mm2
Structure / Preparation	Fat Clay Tr/Mica	Initial Water Content*	32.8 %
	Yellow		(trimmings: 35.6 %)
	Brown(CH)		
Initial Wet Unit Weight	17.02 kN/m3	Degree of Saturation	84.47 %
Initial Dry Unit Weight	12.82 kN/m3	Initial Voids Ratio	1.028
Final Wet Unit Weight	19.05 kN/m3	Final Water Content	37.32%
Final Dry Unit Weight	13.87 kN/m3	Dry Mass	82.00 g
Tested Dry or Submerged	Submerged	· ·	-
Comments			

* Calculated from initial and dry weights of whole specimen

112512-1 DSGroup Report.doc 08/25/2009

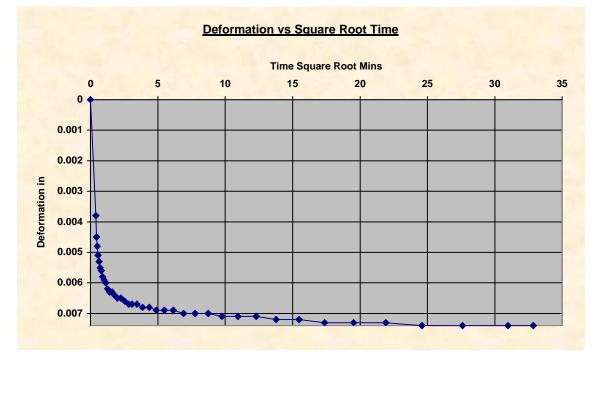
Client	Greenhorne & O'Mara, Inc.	Lab Ref	2.0 tsf
Project	North Hill Property MHP	Job	14444
Borehole	ECS-5	Sample	112512-1

Conditions at Failure		
Normal Stress	191.6 kPa	
Peak Strength	56.2 kPa	
Horizontal Deformation	1.202 mm	
Residual Stress	34.9 kPa	
Vertical Deformation	1.792 mm	

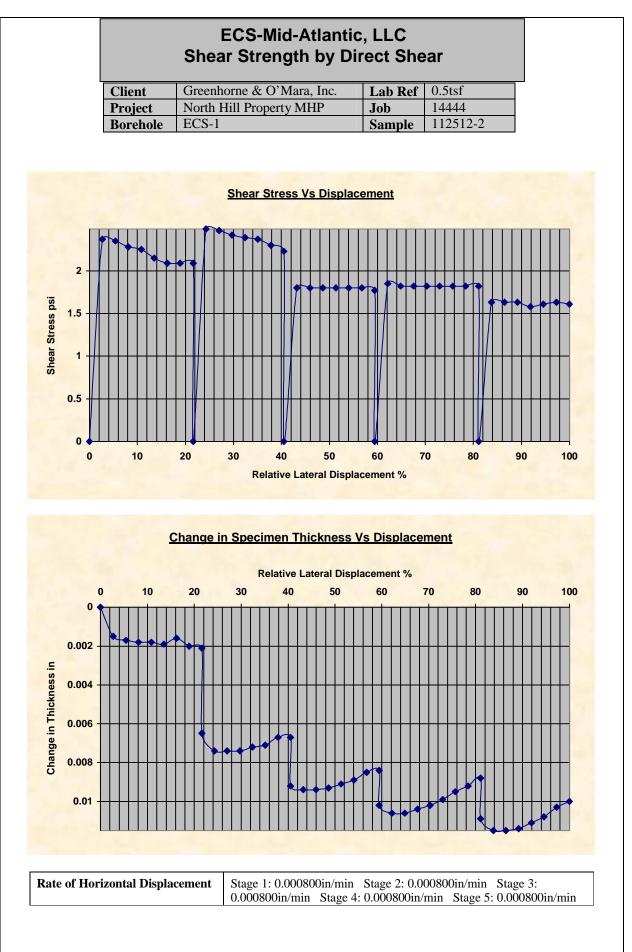
Tested By and Date:	5/8/09 DVT
Checked By and Date:	5/18/09 DVT
Approved By and Date:	MET

Test Summary					
Reference	A	В	С		
Normal Stress	47.9 kPa	95.8 kPa	191.6 kPa		
Peak Strength	17.0 kPa	30.2 kPa	56.2 kPa		
Corresponding Horizontal Displacement	2.402 mm	1.199 mm	1.202 mm		
Residual Stress	11.3 kPa	18.4 kPa	34.9 kPa		
Rate of Shear Displacement	Stage 1: 0.0203mm/min Stage 2: 0.0203mm/min Stage 3: 0.0203mm/min Stage 4: 0.0203mm/min Stage 5: 0.0203mm/min	Stage 1: 0.0203mm/min Stage 2: 0.2032mm/min Stage 3: 0.0203mm/min Stage 4: 0.0203mm/min Stage 5: 0.0203mm/min	Stage 1: 0.0203mm/min Stage 2: 0.0203mm/min Stage 3: 0.0203mm/min Stage 4: 0.0203mm/min Stage 5: 0.0232mm/min		
Final Height	19.72 mm	20.12 mm	18.31 mm		
Sample Area	3167.74 mm2	3167.74 mm2	3167.74 mm2		
Initial Wet Unit Weight	17.48 kN/m3	17.71 kN/m3	17.02 kN/m3		
Initial Dry Unit Weight	13.05 kN/m3	13.13 kN/m3	12.82 kN/m3		
Final Wet Unit Weight	18.24 kN/m3	18.14 kN/m3	19.05 kN/m3		
Final Dry Unit Weight					
Final Moisture Content	39.1 %	40.3 %	37.3 %		
Particle Specific Gravity	2.65	2.65	2.65		
Final Void Ratio	0.9828	1.0102	0.8741		
Final Saturation	105.53%	105.71%	113.13%		

Peak & Residual Shear Stress vs Normal Stress


Peak & Residual Shear Stress kPa

Client	Greenhorne & O'Mara, Inc.	Lab Ref	0.5tsf
Project	North Hill Property MHP	Job	14444
Borehole	ECS-1	Sample	112512-2


	Test Details			
Standard	ASTM D3080-03 / AASHTO T236-92	Particle Specific Gravity	2.65	
Sample Type	Undisturbed sample - open drive	Single or Multi Stage	Multi Stage : 5 Stages	
Lab. Temperature	73.4 deg.F	Location	ECS-1 11.0-13.0	
Sample Description	Fat Clay Tr/Mica Yellow Brown(CH)			
Variations from procedure	None			

Specimen Details			
Specimen Reference	A	Description	Fat Clay Tr/Mica
•	/ \		Yellow Brown(CH)
Depth within Sample	0.0000in	Orientation within Sample	
Initial Height	0.7799 in	Area	4.91000 in2
Structure / Preparation	HNT1	Initial Water Content*	34.7 %
			(trimmings: 33.3 %)
Initial Wet Unit Weight	112.82 lbf/ft3	Degree of Saturation	94.26 %
Initial Dry Unit Weight	83.74 lbf/ft3	Initial Voids Ratio	0.976
Final Wet Unit Weight	116.95 lbf/ft3	Final Water Content	38.46%
Final Dry Unit Weight	84.47 lbf/ft3	Dry Mass	0.1855 lb
Tested Dry or Submerged	Submerged		
Comments			

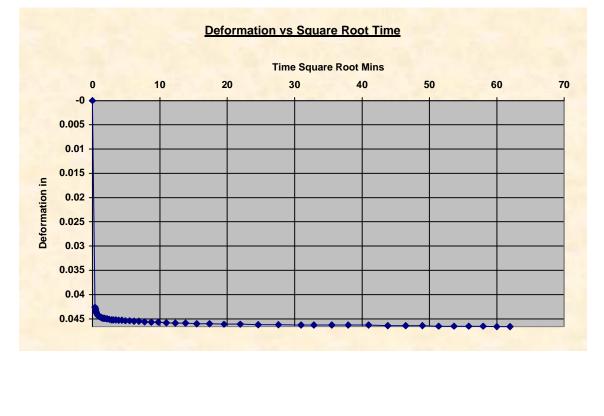
* Calculated from initial and dry weights of whole specimen

14444 112512-2 Group Report.doc 08/25/2009

14444 112512-2 Group Report.doc 08/25/2009

- 6				
	Client	Greenhorne & O'Mara, Inc.	Lab Ref	0.5tsf
	Project	North Hill Property MHP	Job	14444
	Borehole	ECS-1	Sample	112512-2

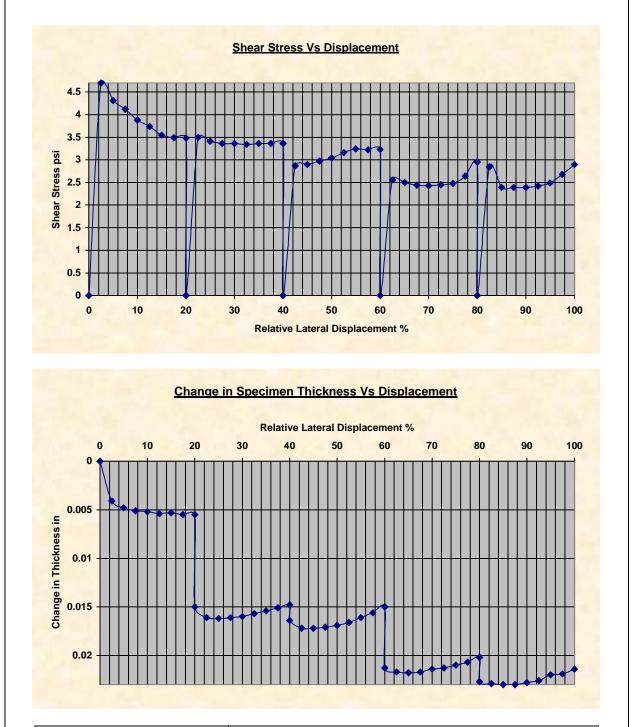
Conditions at Failure			
Normal Stress 6.95 psi			
Peak Strength	2.49 psi		
Horizontal Deformation 0.4258 in			
Residual Stress	1.61 psi		
Vertical Deformation	0.0149 in		


Tested By and Date:	HNT1 5/16/09
Checked By and Date:	DVT
Approved By and Date:	MET

Client	Greenhorne & O'Mara, Inc.	Lab Ref	1.0 tsf
Project	North Hill Property MHP	Job	14444
Borehole	ECS-1	Sample	112512-2

Test Details				
Standard	Standard ASTM D3080-03 / AASHTO Particle Specific 2 T236-92 Gravity			
Sample Type	Undisturbed sample - open drive	Single or Multi Stage	Multi Stage : 5 Stages	
Lab. Temperature	73.4 deg.F	Location	ECS-1 11.0-13.0	
Sample Description	Fat Clay Tr/Mica Yellow Brown(CH)			
Variations from procedure	None			

	Specimen Details				
Specimen Reference	В	Description	Fat Clay Tr/Mica		
•			Yellow L/Brown(CH)		
Depth within Sample	0.0000in	Orientation within Sample			
Initial Height	0.7799 in	Area	4.91000 in2		
Structure / Preparation	DVT 5/22/09	Initial Water Content*	33.8 %		
			(trimmings: 33.2 %)		
Initial Wet Unit Weight	111.89 lbf/ft3	Degree of Saturation	91.46 %		
Initial Dry Unit Weight	83.63 lbf/ft3	Initial Voids Ratio	0.979		
Final Wet Unit Weight	123.07 lbf/ft3	Final Water Content	38.08%		
Final Dry Unit Weight	89.13 lbf/ft3	Dry Mass	0.1853 lb		
Tested Dry or Submerged	Submerged				
Comments					


* Calculated from initial and dry weights of whole specimen

14444 112512-2 Group Report.doc 08/25/2009

Client	Greenhorne & O'Mara, Inc.	Lab Ref	1.0 tsf
Project	North Hill Property MHP	Job	14444
Borehole	ECS-1	Sample	112512-2

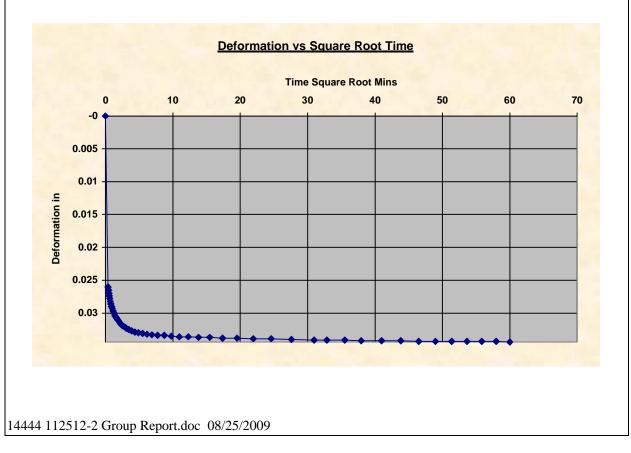
Rate of Horizontal Displacement

Stage 1: 0.000800in/min Stage 2: 0.000800in/min Stage 3: 0.000800in/min Stage 4: 0.000800in/min Stage 5: 0.000800in/min

14444 112512-2 Group Report.doc 08/25/2009

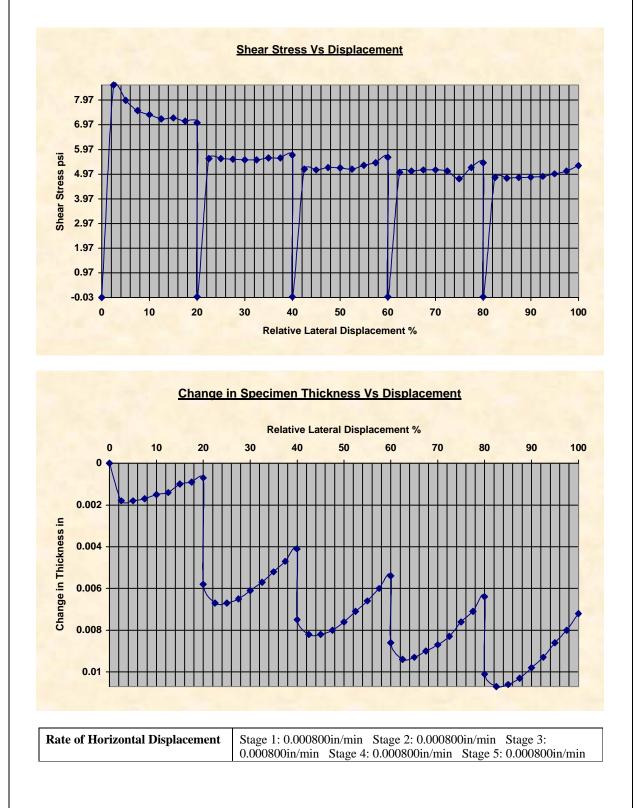
- L				
	Client	Greenhorne & O'Mara, Inc.	Lab Ref	1.0 tsf
	Project	North Hill Property MHP	Job	14444
	Borehole	ECS-1	Sample	112512-2

Conditions at Failure			
Normal Stress 13.89 psi			
Peak Strength	4.70 psi		
Horizontal Deformation 0.0474 in			
Residual Stress 2.90 psi			
Vertical Deformation	0.0507 in		


Tested By and Date:	DVT 5/22/09
Checked By and Date:	DVT 6/1/09
Approved By and Date:	MET

Client	Greenhorne & O'Mara, Inc.	Lab Ref	112512-2
Project	North Hill Property MHP	Job	14444
Borehole	ECS-1	Sample	112512-2

Test Details				
Standard	2.65			
Sample Type	Undisturbed sample - open Single or Stage		Multi Stage : 5 Stages	
Lab. Temperature	73.4 deg.F	Location	ECS-1 11.0-13.0	
Sample Description	Fat Clay Tr/Mica Yellow Brown(CH)			
Variations from procedure	None			


Specimen Details			
Specimen Reference	С	Description	Fat Clay Tr/Mica
	•		Yellow Brown(CH)
Depth within Sample	0.0000in	Orientation within Sample	
Initial Height	0.7799 in	Area	4.91000 in2
Structure / Preparation	Fat Clay Tr/Mica	Initial Water Content*	36.3 %
	Yellow		(trimmings: 34.0 %)
	Brown(CH)		
Initial Wet Unit Weight	113.29 lbf/ft3	Degree of Saturation	97.11 %
Initial Dry Unit Weight	83.10 lbf/ft3	Initial Voids Ratio	0.992
Final Wet Unit Weight	119.34 lbf/ft3	Final Water Content	38.79%
Final Dry Unit Weight	85.99 lbf/ft3	Dry Mass	0.1841 lb
Tested Dry or Submerged	Submerged	· · ·	•
Comments			

* Calculated from initial and dry weights of whole specimen

Client	Greenhorne & O'Mara, Inc.	Lab Ref	112512-2
Project	North Hill Property MHP	Job	14444
Borehole	ECS-1	Sample	112512-2


Client	Greenhorne & O'Mara, Inc.	Lab Ref	112512-2
Project	North Hill Property MHP	Job	14444
Borehole	ECS-1	Sample	112512-2

Conditions at Failure					
Normal Stress	27.79 psi				
Peak Strength	8.58 psi				
Horizontal Deformation	0.0474 in				
Residual Stress	5.31 psi				
Vertical Deformation	0.0362 in				

Tested By and Date:	5/29/09 DVT
Checked By and Date:	6/8/09 DVT
Approved By and Date:	MET

	Te	est Summary		
Reference	А	В	С	
Normal Stress	6.95 psi	13.89 psi	27.79 psi	
Peak Strength	2.49 psi	4.70 psi	8.58 psi	
Corresponding Horizontal Displacement	0.4258 in	0.0474 in	0.0474 in	
Residual Stress	1.61 psi	2.90 psi	5.31 psi	
Rate of Shear Displacement	Stage 1: 0.000800in/min Stage 2: 0.000800in/min Stage 3: 0.000800in/min Stage 4: 0.000800in/min Stage 5: 0.000800in/min	Stage 1: 0.000800in/min Stage 2: 0.000800in/min Stage 3: 0.000800in/min Stage 4: 0.000800in/min Stage 5: 0.000800in/min	Stage 1: 0.000800in/min Stage 2: 0.000800in/min Stage 3: 0.000800in/min Stage 4: 0.000800in/min Stage 5: 0.000800in/min	
Final Height	0.7733 in	0.7319 in	0.7537 in	
Sample Area	4.91000 in2	4.91000 in2	4.91000 in2	
Initial Wet Unit Weight	112.82 lbf/ft3	111.89 lbf/ft3	113.29 lbf/ft3	
Initial Dry Unit Weight	83.74 lbf/ft3	83.63 lbf/ft3	83.10 lbf/ft3	
Final Wet Unit Weight	116.95 lbf/ft3	123.07 lbf/ft3	119.34 lbf/ft3	
Final Dry Unit Weight				
Final Moisture Content	38.5 %	38.1 %	38.8 %	
Particle Specific Gravity	2.65	2.65	2.65	
Final Void Ratio	0.9593	0.8568	0.9246	
Final Saturation	106.23%	117.77%	111.18%	

Peak & Residual Shear Stress vs Normal Stress

Peak & Residual Shear Stress psi

Appendix D – Calculations

North Hill Soil Properties for Stability Analyses

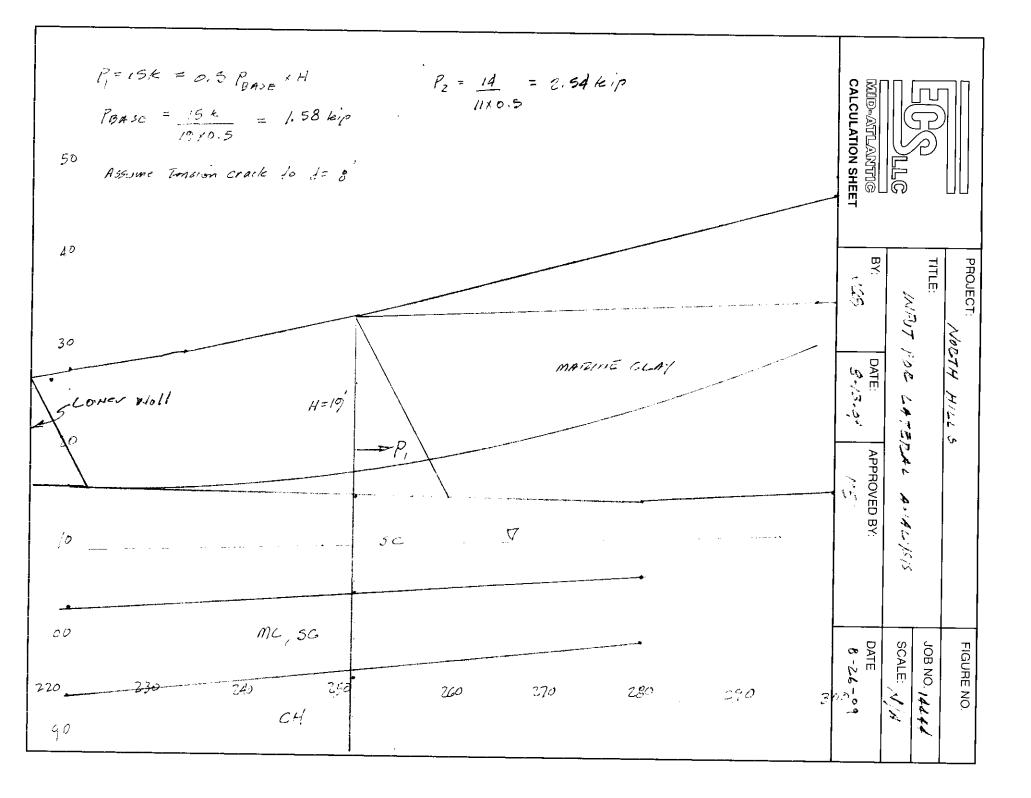
ECS Project No. 14444

JCG 8/7/2009 MET 8/24/2009 Checked

Profile F-F											
Stratum	Soil Types	SPT ECS-8	SPT C-4	SPT ECS-4	Avg N	N ₆₀	VDOT Stratum	Density Moist, pcf	Density Wet, pcf	C psf	Ф deg
1	SC, CL		11, 10 ,8	9, 6	9	11	T-II	115	122	150	30
2	СН		14, 31, 30, 34	11, 19, 18	22	28	T-IIP	112	119	0	9.7
3	SC, SM	11, 17, 9, 7	30, 32	58, 31, 21	24	30	T-III	125	132	150	34
4	ML, SC, CL	14, 23, 21	16	26, 49, 53	29	36	T-III	125	132	150	32
5	СН		38, 45, 35, 42		40	50	T-IIP	112	119	0	9.7
6	SM	19, 25		32, 45	30	38	T-III	125	132	150	34

Profile D-D

Stratum	Soil Types	SPT ECS-7	SPT C-3	SPT ECS-3	Avg N	N ₆₀	VDOT Stratum	Density Moist, pcf	Density Wet, pcf	C psf	Ф deg
											1
1	SC, SM, CL	7, 12, 29	24, 30, 10, 32, 29	16, 13, 10	19	24	T-II	115	122	150	30
2	СН		17	13, 18, 19	17	21	T-IIP	112	119	0	9.7
3	SC	16, 15, 13	20, 30	29, 25, 20	21	26	T-II	115	122	150	30
4	СН			26, 32	29	36	T-IIP	112	119	0	9.7
5	SC, CL		30, 32, 29, 29	30, 29	30	37	T-III	125	132	150	34
6	CL, CH	18, 30, 54	31, 48		36	45	T-III	125	132	150	32
7	SM, SC	53, 55		22	43	54	T-III	125	132	150	34


Profile C-C

Stratum	Soil Types	SPT ECS-6	SPT C-2	SPT ECS-2	Avg N	N ₆₀	VDOT Stratum	Density Moist, pcf	Density Wet, pcf	C psf	Ф deg
1	CL, SC	7, 10, 15	16, 7	15, 11, 32, 38, 14	17	21	T-II	115	122	150	30
2	СН		30	25, 31, 35, 25	29	37	T-IIP	112	119	0	9.7
3	SC, SM, SP	20, 18, 8, 17	21, 26, 24, 30, 34	26, 38	24	30	T-III	125	132	150	34
4	CL, SC	20, 41, 39			33	42	T-III	125	132	150	34
5	СН		29, 32, 32, 31	32	31	39	T-IIP	112	119	0	9.7
6	SM, SC, CL	46	74	27, 23	43	53	T-III	125	132	150	34

Direct Shear Specimen

Boring No.	Density	Density	Density	Avg. Density	Density	Density	Density	Avg. Density	Φr
	Moist, pcf	Moist, pcf	Moist, pcf	Wet, pcf	Wet, pcf	Wet, pcf	Wet, pcf	Wet, pcf	deg
ECS-1	112.82	111.89	113.29	112.67	116.95	123.07	119.34	119.79	10
ECS-5	111.26	112.72	108.33	110.77	116.1	115.46	121.26	117.61	9.4
Average				112				119	9.7

Note: Hammer efficiency assumed 75%

Attachments to Exhibit N - Technical Requirements

A-II	>5≤20	50 (2.4 kPa)	30	108 (17.3 kN/m3)	115 (18.4 kN/m3)
A-111	>20	50 (2.4 kPa)	32	115 (18.4 kN/m3)	122 (19.5 kN/m3)

Notes:

Attachment 1.5B

Natural condition, above the groundwater table

Saturated condition, below the groundwater table

Submerged (or buoyant) unit weight = Saturated unit weight - Unit weight of water

Stratum T - Terrace - These soils generally consist of coarse-grained silty and clayey sands and gravels with discontinuous lenses and thin layers of silts and clays. They are generally of low to medium plasticity but lenses of clay can be highly plastic. Typical SPT N60 values range from 5 to 50 bpf. Typical thickness is 5 to 40 feet.

Table 2: T	voical	Engineering	Design	Properties	(Terrace D	eposits)
	1				,	

SPT N60	Cohesion, c	Friction	Moist Unit	Saturated Unit
Value	(psf)	Angle, ø	Weight1 (pcf)	Weight2, 3 (pcf)
(bpf)		(degrees)		
≤10	150 (7.2 kPa)	26	105 (16.8 kN/m3)	112 (17.9 kN/m3)
>10≰30	150 (7.2 kPa)	30	115 (18.4 kN/m3)	122 (19.5 kN/m3)
>30	150 (7.2 kPa)	34	125 (20 kN/m3)	132 (21.1 kN/m3)
	Value (bpf) ≤10 >10	Value (psf) (bpf) 150 (7.2 kPa) >10 ≤30 150 (7.2 kPa)	Value (psf) Angle, φ (bpf) (degrees) ≤10 150 (7.2 kPa) 26 >10 ≤30 150 (7.2 kPa) 30	Value (psf) Angle, φ (degrees) Weight1 (pcf) ≤10 150 (7.2 kPa) 26 105 (16.8 kN/m3) >10 ≤30 150 (7.2 kPa) 30 115 (18.4 kN/m3)

Notes:

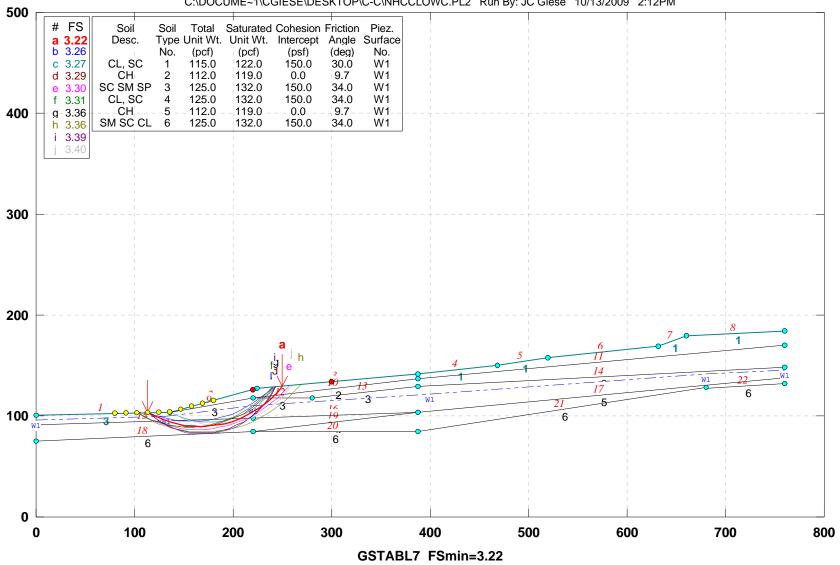
Natural condition, above the groundwater table

Saturated condition, below the groundwater table

Submerged (or buoyant) unit weight = Saturated unit weight - Unit weight of water

Stratum P - Potomac Formation - These soils generally consist of interbedded highly plastic and medium plasticity clays with lenses and thin layers of silt and sand and are classified as CH, MH, CL and ML. Clays are generally highly overconsolidated and can contain "slickensides" which are indicative of extremely effective residual friction angles. Typically blue-gray clays are locally termed "marine clays". Below a weathered zone with SPT N60 values of 10 to 30 bpf, SPT N60 values typically range from 30 to >100 bpf. Typical thickness is 5 to 40 feet.

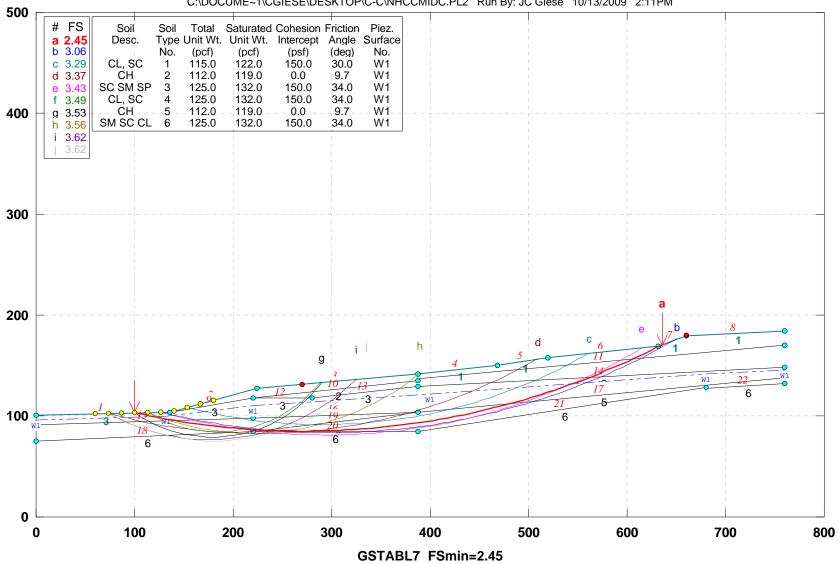
Sub-	SPT N60	Cohesion, c	Friction	Moist Unit	Saturated Unit
Stratum	Value	(psf)	Angle, ø	Weight1 (pcf)	Weight2, 3 (pcf)
	(bpf)		(degrees)		
P-I	≤10	150 (7.2 kPa)4	204	100 (16 kN/m3)	107 (17.1 kN/m3)
'P-II	>10 <i>≤</i> 30	250 (12 kPa) 4	244	110 (17.6 kN/m3)	117 (18.7 kN/m3)
P-111	>30	350 (16.8 kPa) 4	284	120 (19.2 kN/m3)	127 (20.3 kN/m3)


Notes:

Natural condition, above the groundwater table

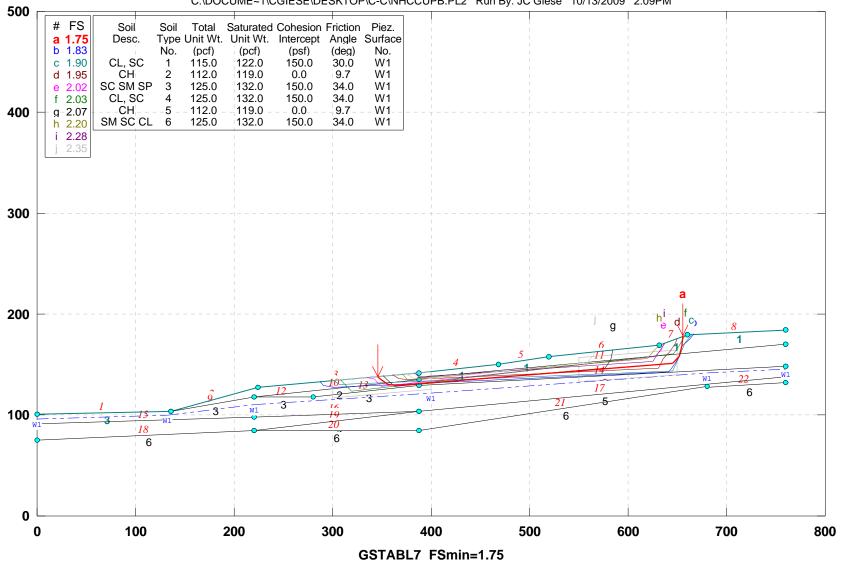
Saturated condition, below the groundwater table

Submerged (or buoyant) unit weight = Saturated unit weight - Unit weight of water


North Hill Analysis No. 1 Section C-C

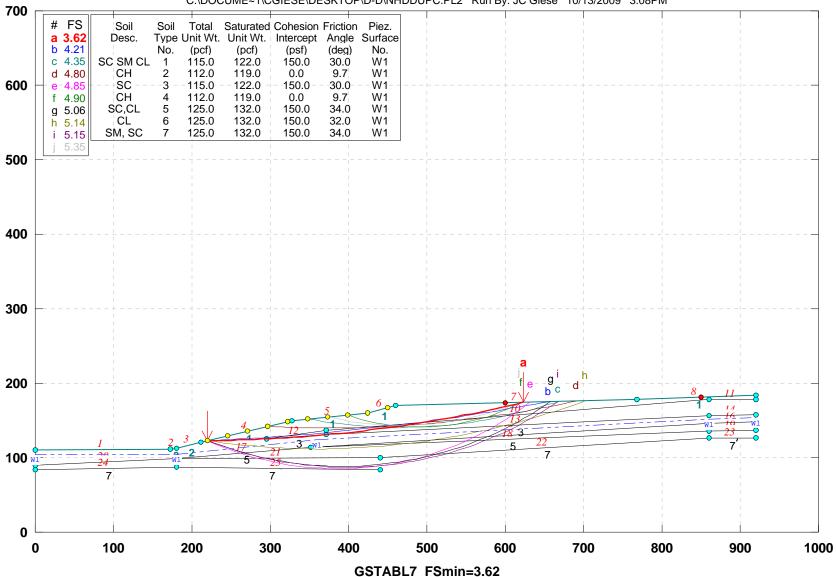
C:\DOCUME~1\CGIESE\DESKTOP\C-C\NHCCLOWC.PL2 Run By: JC Giese 10/13/2009 2:12PM

Safety Factors Are Calculated By The Modified Bishop Method


North Hill Analysis No. 2 Section C-C

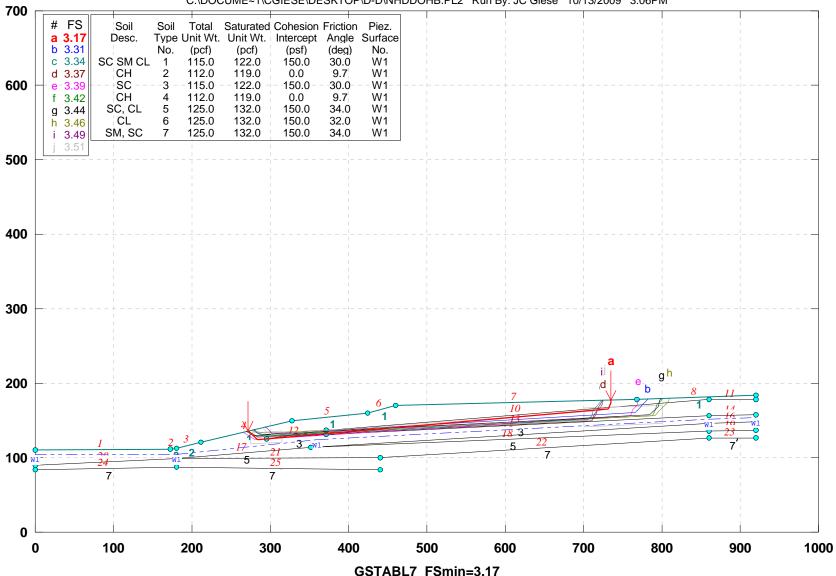
C:\DOCUME~1\CGIESE\DESKTOP\C-C\NHCCMIDC.PL2 Run By: JC Giese 10/13/2009 2:11PM

Safety Factors Are Calculated By The Modified Bishop Method


North Hill Analysis No. 3 Section C-C

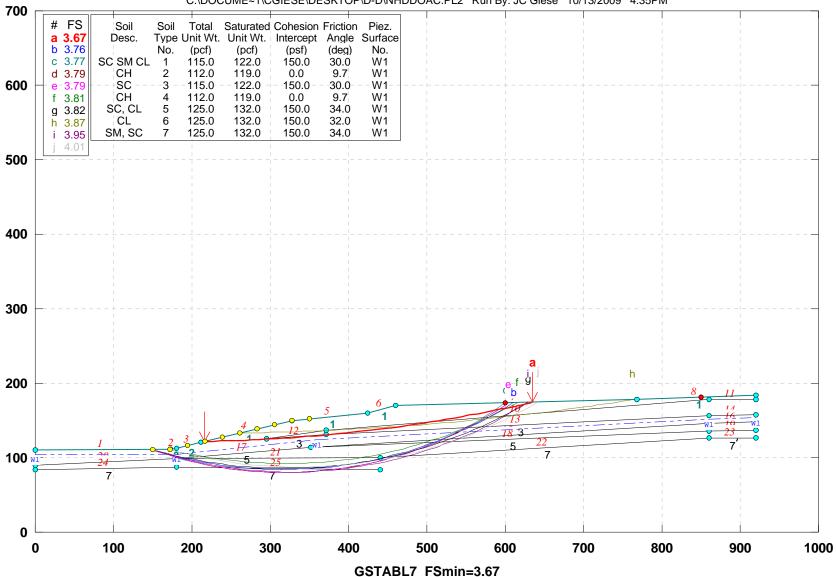
C:\DOCUME~1\CGIESE\DESKTOP\C-C\NHCCUPB.PL2 Run By: JC Giese 10/13/2009 2:09PM

Safety Factors Are Calculated By The Simplified Janbu Method


North Hill Analysis No. 4 Section D-D

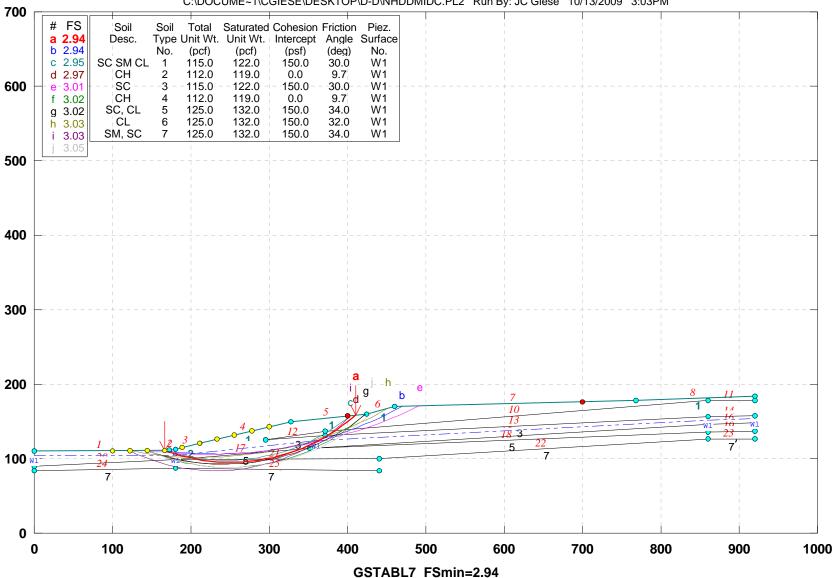
C:\DOCUME~1\CGIESE\DESKTOP\D-D\NHDDUPC.PL2 Run By: JC Giese 10/13/2009 3:08PM

Safety Factors Are Calculated By The Modified Bishop Method


North Hill Analysis No. 5 Section D-D

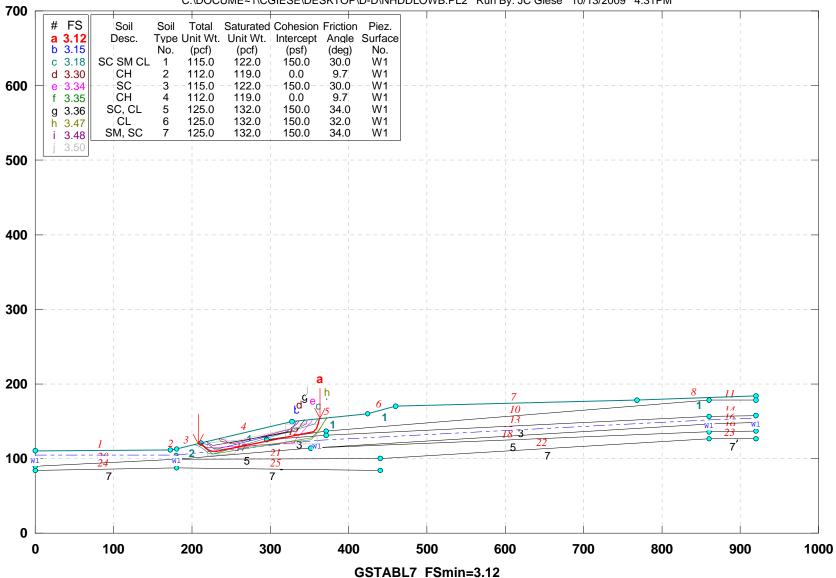
C:\DOCUME~1\CGIESE\DESKTOP\D-D\NHDDOHB.PL2 Run By: JC Giese 10/13/2009 3:06PM

Safety Factors Are Calculated By The Simplified Janbu Method


North Hill Analysis No. 6 Section D-D

C:\DOCUME~1\CGIESE\DESKTOP\D-D\NHDDOAC.PL2 Run By: JC Giese 10/13/2009 4:35PM

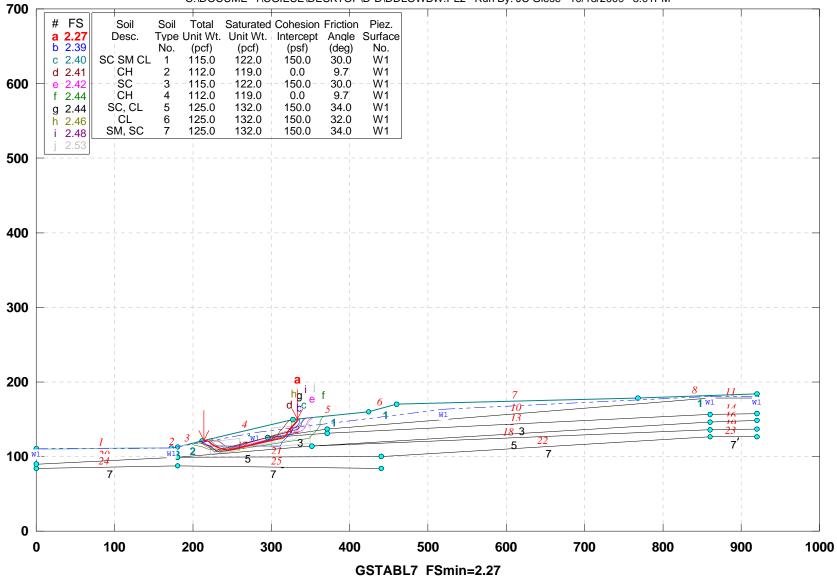
Safety Factors Are Calculated By The Modified Bishop Method


North Hill Analysis No. 7 Section D-D

C:\DOCUME~1\CGIESE\DESKTOP\D-D\NHDDMIDC.PL2 Run By: JC Giese 10/13/2009 3:03PM

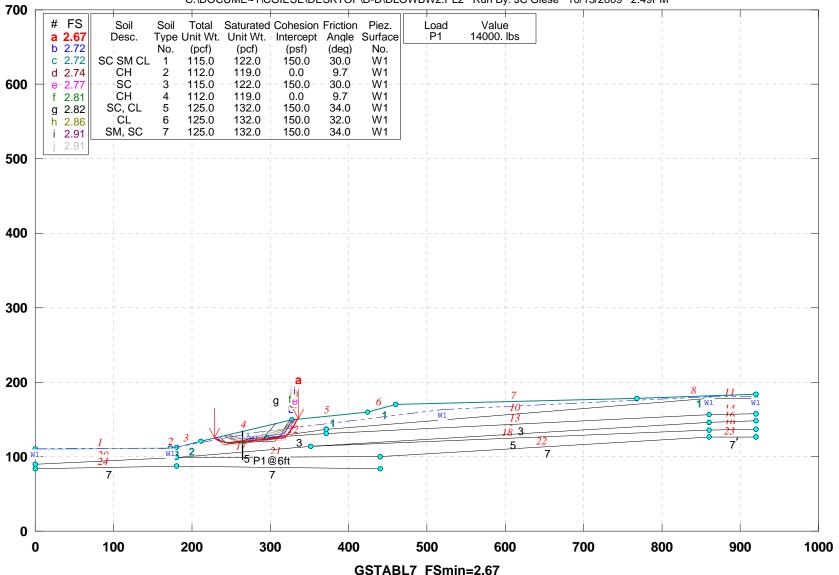
Safety Factors Are Calculated By The Modified Bishop Method

North Hill Analysis No. 8 Section D-D

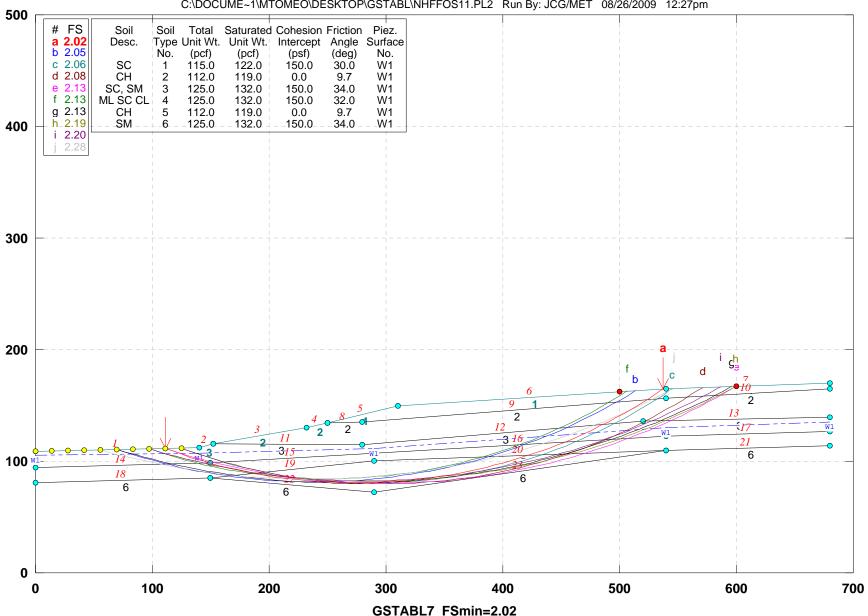


C:\DOCUME~1\CGIESE\DESKTOP\D-D\NHDDLOWB.PL2 Run By: JC Giese 10/13/2009 4:31PM

Safety Factors Are Calculated By The Simplified Janbu Method

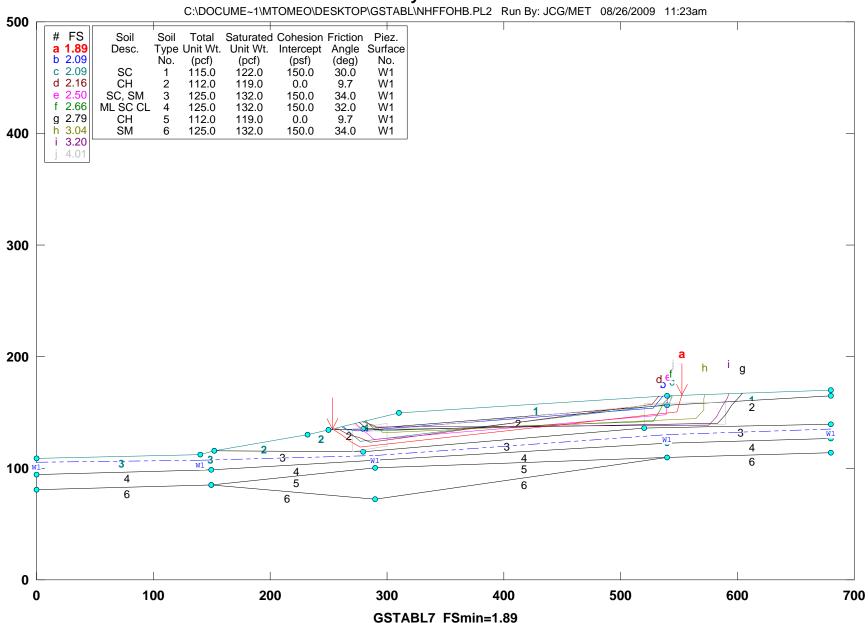

North Hill Analysis No. 9 Lower Slope BISection D-D

C:\DOCUME~1\CGIESE\DESKTOP\D-D\DDLOWBW.PL2 Run By: JC Giese 10/13/2009 3:01PM


Safety Factors Are Calculated By The Simplified Janbu Method

North Hill Analysis No. 10 Section D-D

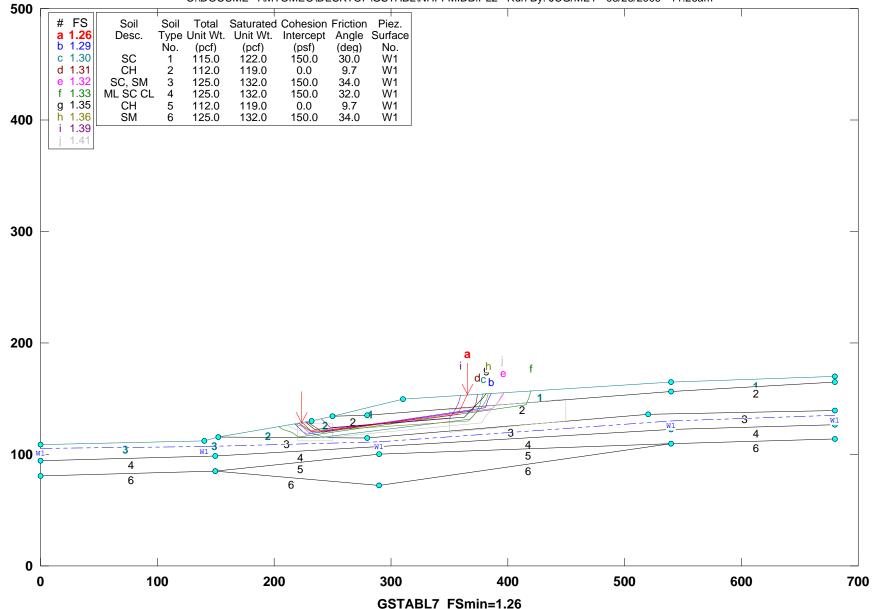
C:\DOCUME~1\CGIESE\DESKTOP\D-D\DLOWBW2.PL2 Run By: JC Giese 10/13/2009 2:49PM


Safety Factors Are Calculated By The Simplified Janbu Method

North Hill Analysis No. 11 Section F-F

C:\DOCUME~1\MTOMEO\DESKTOP\GSTABL\NHFFOS11.PL2 Run By: JCG/MET 08/26/2009 12:27pm

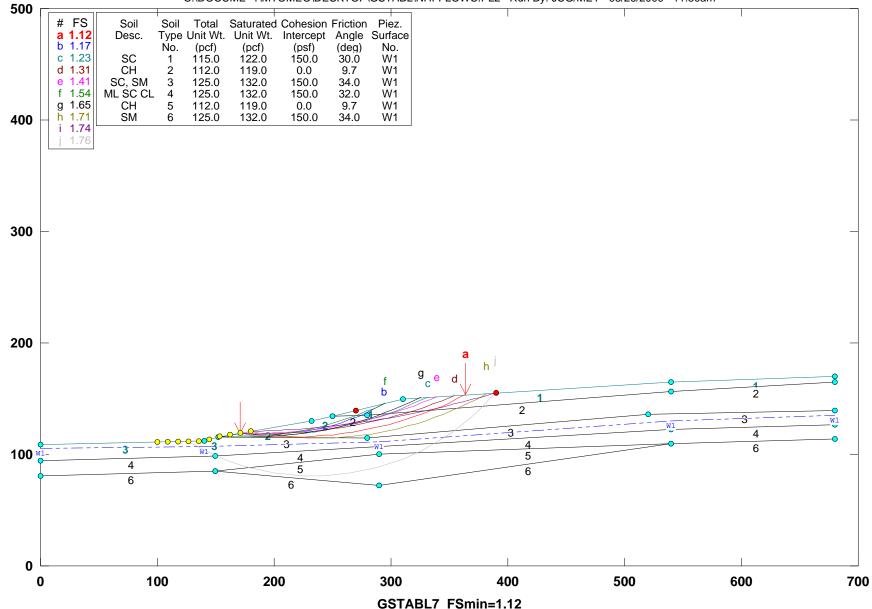
Safety Factors Are Calculated By The Modified Bishop Method



Safety Factors Are Calculated By The Simplified Janbu Method

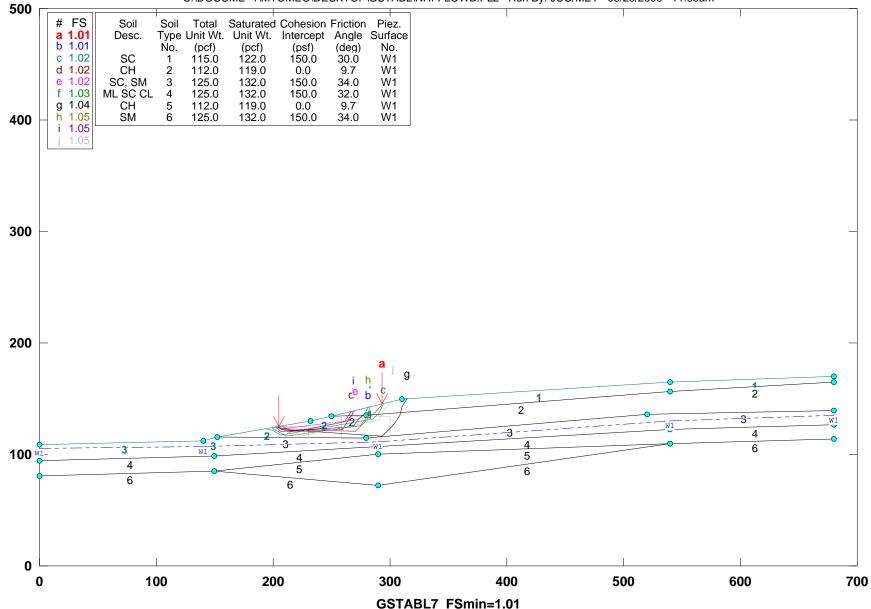
North Hill Analysis No. 12 Section F-F

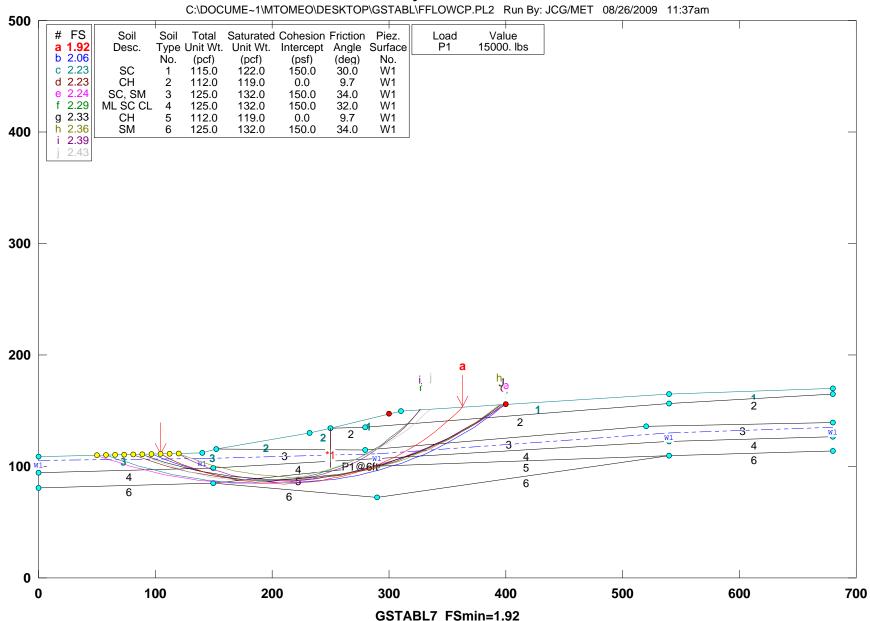
North Hill Analysis No. 13 Section F-F


C:\DOCUME~1\MTOMEO\DESKTOP\GSTABL\NHFFMIDB.PL2 Run By: JCG/MET 08/26/2009 11:26am

Safety Factors Are Calculated By The Simplified Janbu Method

North Hill Analysis No. 14 Section F-F

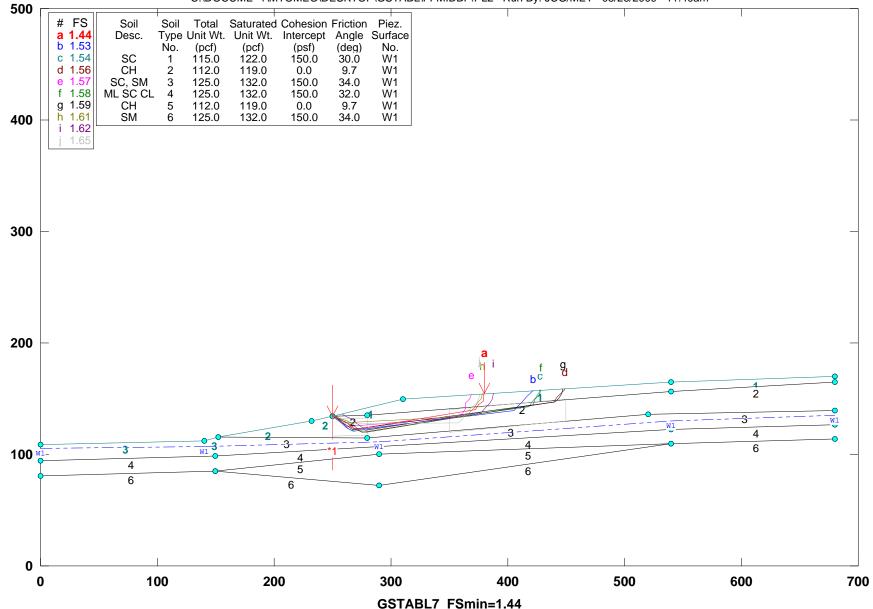

C:\DOCUME~1\MTOMEO\DESKTOP\GSTABL\NHFFLOWC.PL2 Run By: JCG/MET 08/26/2009 11:30am


Safety Factors Are Calculated By The Modified Bishop Method

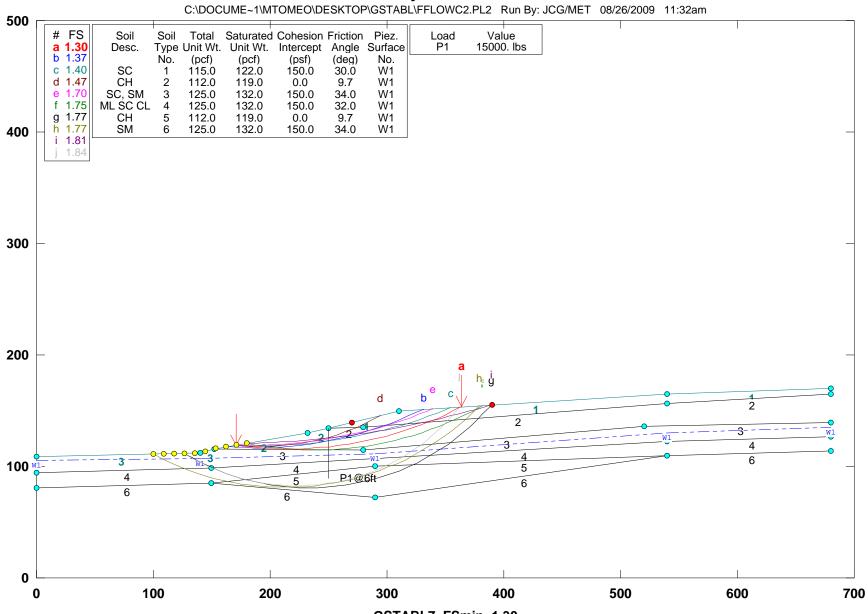
North Hill Analysis No. 15 Section F-F

C:\DOCUME~1\MTOMEO\DESKTOP\GSTABL\NHFFLOWB.PL2 Run By: JCG/MET 08/26/2009 11:35am

Safety Factors Are Calculated By The Simplified Janbu Method



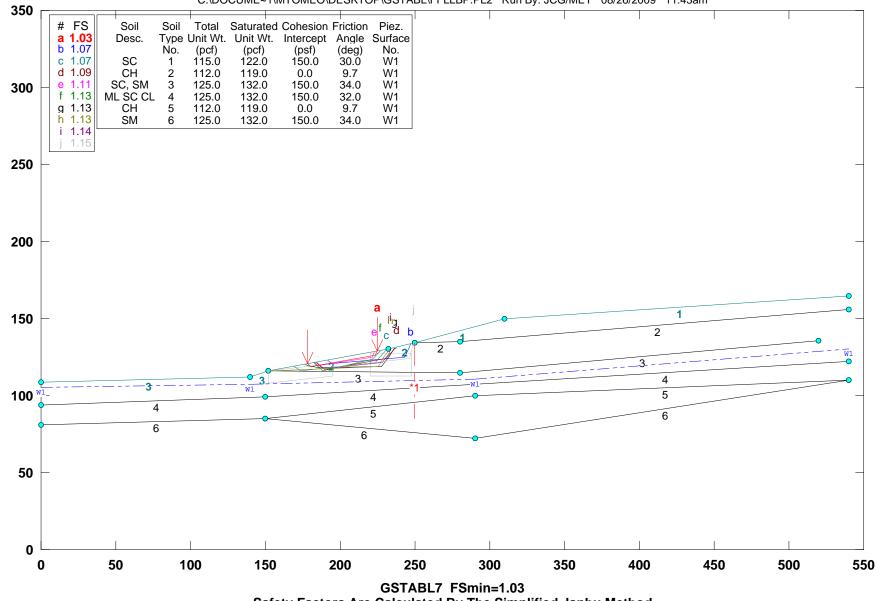
North Hill Analysis No. 16 Section F-F


Safety Factors Are Calculated By The Modified Bishop Method

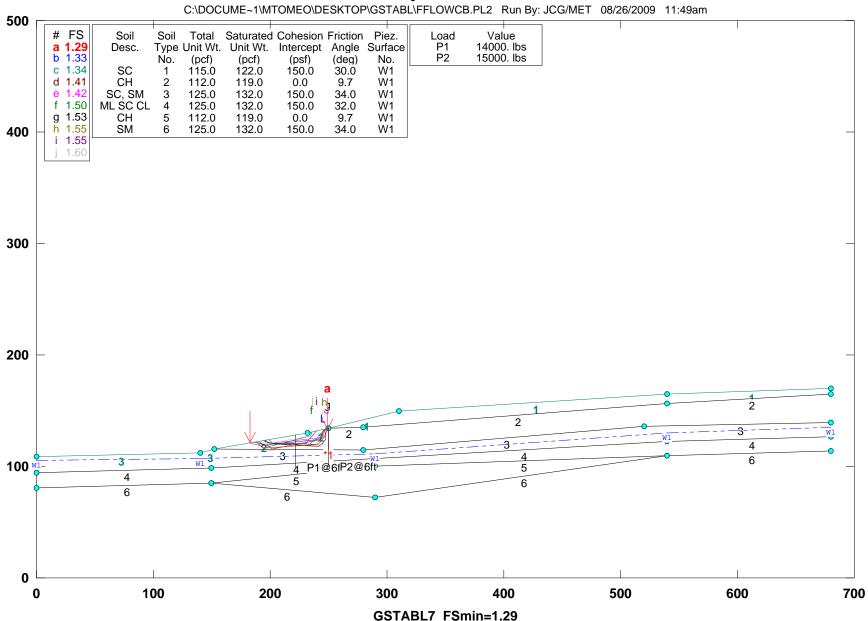
North Hill Analysis No. 17 Section F-F

C:\DOCUME~1\MTOMEO\DESKTOP\GSTABL\FFMIDBP.PL2 Run By: JCG/MET 08/26/2009 11:40am

Safety Factors Are Calculated By The Simplified Janbu Method

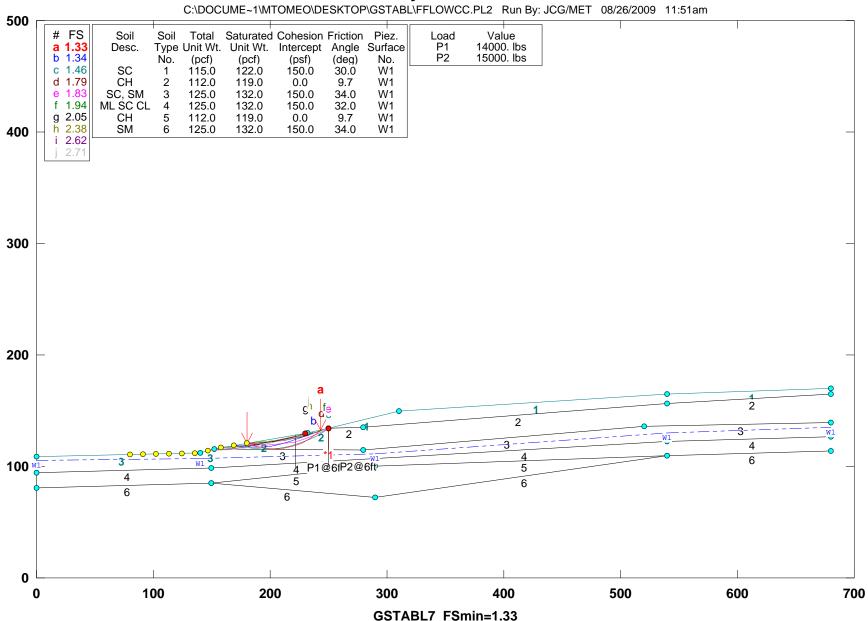


North Hill Analysis No. 18 Section F-F


GSTABL7 FSmin=1.30 Safety Factors Are Calculated By The Modified Bishop Method

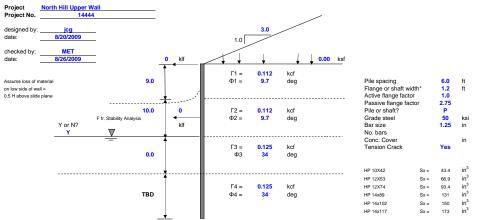
North Hill Analysis No. 19 Section F-F

C:\DOCUME~1\MTOMEO\DESKTOP\GSTABL\FFLLBP.PL2 Run By: JCG/MET 08/26/2009 11:43am

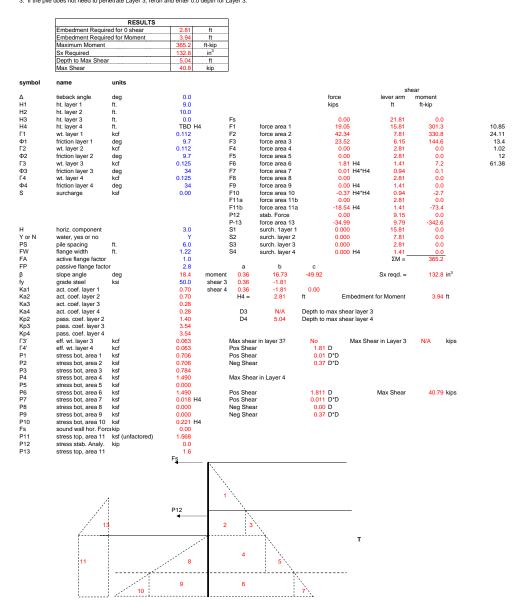


Safety Factors Are Calculated By The Simplified Janbu Method

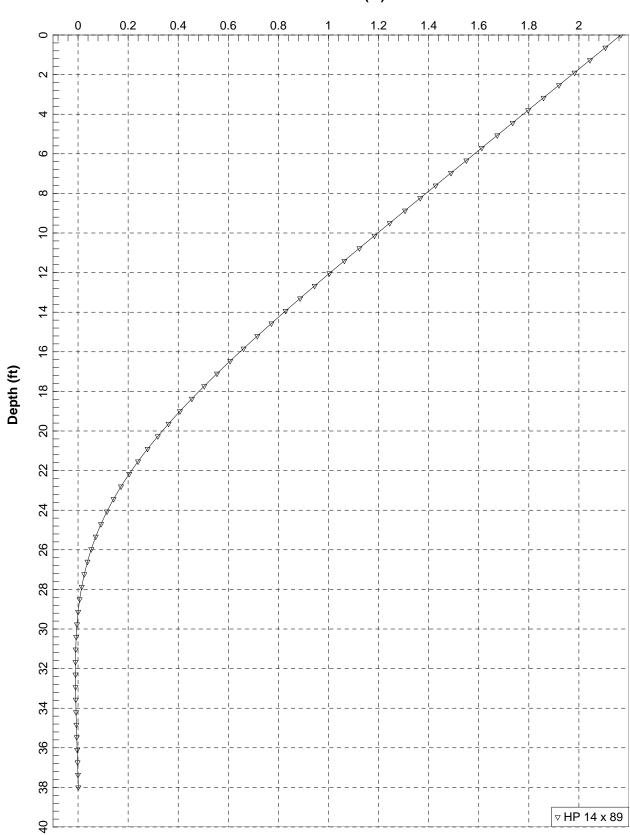
Safety Factors Are Calculated By The Simplified Janbu Method


North Hill Analysis No. 20 Section F-F

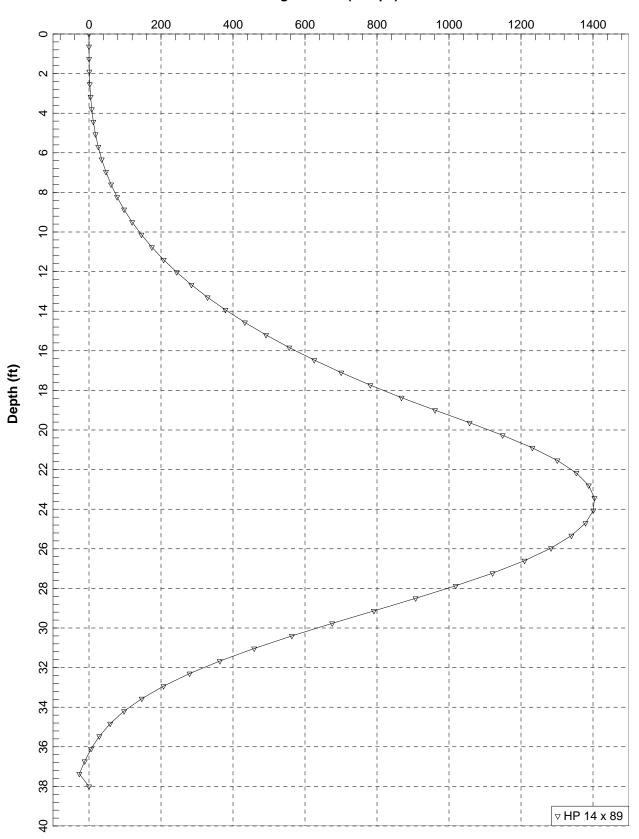
Safety Factors Are Calculated By The Modified Bishop Method


North Hill Analysis No. 21 Section F-F

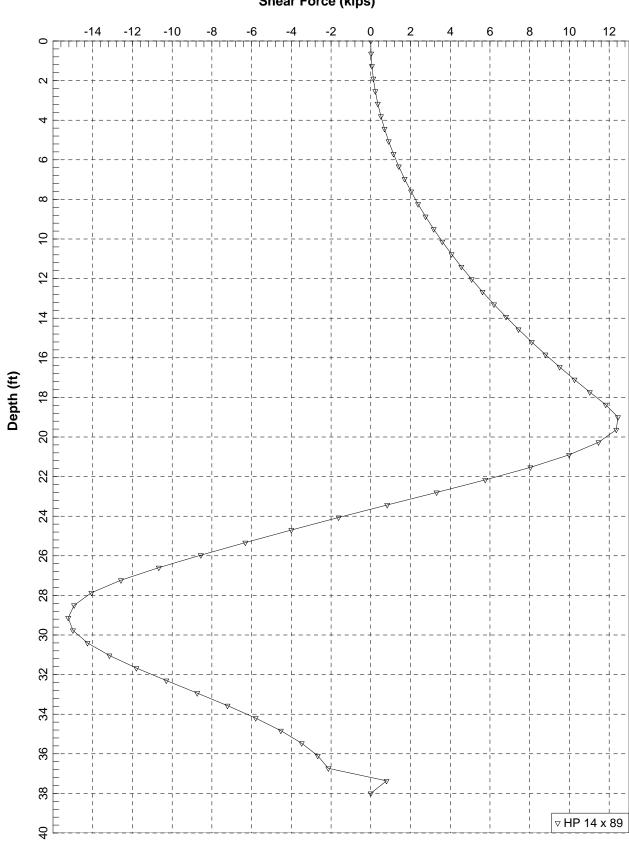
Design of Pile or Drilled Shaft Walls for North Hill MHP


Instructions 1. Enter values indicated by bold blue.

Indicate Y or N for water table.
 If the pile does not need to penetrate Layer 3, rerun and enter 0.0 depth for Layer 3.



* Use flange width (driven) or diameter of predrilled hole for piles


LPILE/G	ROUP D		UTFOR	М		North Hill	мнр			Project No.		14444	
Structura	al Engine	ers Plea	ase Ente	er Info in	Shadeo	Boxes		1					
						Input Required N	oted in Blue	-	Red Values Ar	e Calculated			
		I I		I			-			By:	JCG	-	08/13/2009
Bridge No.	NH	Pier No.	Upper W	Top of Pi	le/Shaft El.	134.0				Checked:	MET	Date:	08/27/2009
Indicate	e Analysis Ty	e Required	X	L/PILE Sing	le Pile/Shaft	Free head				Boring No.	W5	iB-1]
				L/PILE Sing	le Pile/Shaft	Fixed head							-
				GROUP Fixe	ed Head	(00)	Top of Grou	und EL (Acou	mes tension c	rock to a dap	th of 9 foot)		
	Indicate	Load Type	x	Single Pile/S	Shaft Load	126		unu El. (Assu					
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Group Load		1	No. Piles/S	hafts for GR	OUP				
				-			-						
		Pier Dia. ft	-		Pile Size	12*74	J			enter triangu	lar load as 1.	58 klf to a dep	pth of 19'
	Tranverse S	pacing, ft		Longi	. Spacing, ft		Do not ente	r spacing for l	PILE analysis	S.			
				_			-		ondary/tertiary		t is not		
			for Axial C	apacity An	alysis , kips	0	for dd		rent which loa	ad group is the	e dominant		
	effects with F .oad Conditio				Load Condi	tions (Secondar	0	load group.	Load Conditi	ons (Tortion	0	1	
√v (FV)		kips (Ibs)		Fv (FV)		kips (lbs)		Fv (FV)		kips (lbs))	1	
ý (FL)		kips (lbs)		Fy (FL)		kips (lbs)		Fy (FL)		kips (lbs)			
z (FT)		kips (lbs)		Fz (FT)		kips (lbs)		Fz (FT)		kips (lbs)			
Av (TOR)		kip-ft (lb-in)		Mv (TOR)		kip-ft (lb-in)		Mv (TOR)		kip-ft (Ib-in)			
ly (MT)		kip-ft (lb-in) kip-ft (lb-in)		My (MT) Mz (ML)		kip-ft (lb-in) kip-ft (lb-in)		My (MT) Mz (ML)		kip-ft (lb-in) kip-ft (lb-in)	<u> </u>		
IZ (ML)				· · · /					1		uired for CL,	CH, MH, & R	
/IZ (ML)										00 1			
	ns	Wa	ater Table El.	110.0	ft		4	LPILE	/ GROUP INF				
oil Condition			ater Table El.	110.0		Substrat	∢		/ GROUP INF	PUT PARAM	ETERS	→	1
	El. Bottom	Layer	ater Table El. Soil Type	110.0 Province	ft Avg. N ₆₀	Substrat.	Depth inches	LPILE Density pci	- / GROUP INF Φ°		ETERS Modulus	► E ₅₀	
ioil Condition						Substrat.	-	Density		PUT PARAM	ETERS	► ₅₀	
Layer No.	El. Bottom of Layer ft 115.0	Layer Thickness ft 19.0	Soil Type	Province	Avg. N ₆₀	T-II	inches 96 228	Density pci 0.0666	Φ0	PUT PARAM	ETERS Modulus pci	E ₅₀	
Layer No. Surface 1 2	El. Bottom of Layer ft 115.0 110.0	Layer Thickness ft 19.0 5.0	Soil Type CH SC	Province CP CP	Avg. N ₆₀	T-II T-III	inches 96 228 288	Density pci 0.0666 0.0723	Ф ⁰ 34.0	PUT PARAMI	Modulus pci 166		
Layer No.	El. Bottom of Layer ft 115.0	Layer Thickness ft 19.0	Soil Type	Province	Avg. N ₆₀	T-II	inches 96 228	Density pci 0.0666	Φ0	PUT PARAMI	ETERS Modulus pci		
Layer No. Surface 1 2 3	El. Bottom of Layer ft 115.0 110.0 105.0	Layer Thickness ft 19.0 5.0 5.0	Soil Type CH SC SC	Province CP CP CP	Avg. N ₆₀ 28 30 30	T-II T-III T-III	inches 96 228 288 348	Density pci 0.0666 0.0723 0.0403	Φ° 34.0 34.0	PUT PARAMI	Modulus pci 166 100		
Soil Condition Layer No. Surface 1 2 3 4 5 6	El. Bottom of Layer ft 115.0 105.0 97.0	Layer Thickness ft 19.0 5.0 5.0 8.0	Soil Type CH SC SC ML	Province CP CP CP CP	Avg. N ₆₀ 28 30 30 36	T-II T-III T-III T-III	inches 96 228 288 348 444	Density pci 0.0666 0.0723 0.0403 0.0403	Φ° 34.0 34.0	Cohesion p/in ² 24.3	Modulus pci 166 100	0.002	
Soil Condition Layer No. Surface 1 2 3 4 5 6 7	El. Bottom of Layer ft 115.0 105.0 97.0	Layer Thickness ft 19.0 5.0 5.0 8.0	Soil Type CH SC SC ML	Province CP CP CP CP	Avg. N ₆₀ 28 30 30 36	T-II T-III T-III T-III	inches 96 228 288 348 444	Density pci 0.0666 0.0723 0.0403 0.0403	Φ° 34.0 34.0	Cohesion p/in ² 24.3	Modulus pci 166 100	0.002	
Layer No. Surface 1 2 3 4 5 6	El. Bottom of Layer ft 115.0 105.0 97.0	Layer Thickness ft 19.0 5.0 5.0 8.0	Soil Type CH SC SC ML	Province CP CP CP CP	Avg. N ₆₀ 28 30 30 36	T-II T-III T-III T-III	inches 96 228 288 348 444	Density pci 0.0666 0.0723 0.0403 0.0403	Φ° 34.0 34.0	Cohesion p/in ² 24.3	Modulus pci 166 100	0.002	
boil Condition Layer No. Surface 1 2 3 4 5 6 7 8	El. Bottom of Layer ft 115.0 105.0 97.0	Layer Thickness ft 19.0 5.0 5.0 8.0	Soil Type CH SC SC ML	Province CP CP CP CP	Avg. N ₆₀ 28 30 30 36	T-II T-III T-III T-III	inches 96 228 288 348 444	Density pci 0.0666 0.0723 0.0403 0.0403	Φ° 34.0 34.0	Cohesion p/in ² 24.3	Modulus pci 166 100	0.002	
Layer No. Surface 1 2 3 4 5 6 7 8 9	El. Bottom of Layer ft 115.0 105.0 97.0	Layer Thickness ft 19.0 5.0 5.0 8.0	Soil Type CH SC SC ML	Province CP CP CP CP	Avg. N ₆₀ 28 30 30 36	T-II T-III T-III T-III	inches 96 228 288 348 444	Density pci 0.0666 0.0723 0.0403 0.0403	Φ° 34.0 34.0	Cohesion p/in ² 24.3	Modulus pci 166 100	0.002	
oil Condition Layer No. Surface 1 2 3 4 5 6 7 8 9 9 10	El. Bottom of Layer ft 115.0 105.0 97.0	Layer Thickness ft 19.0 5.0 5.0 8.0	Soil Type CH SC SC ML	Province CP CP CP CP	Avg. N ₆₀ 28 30 30 36	T-II T-III T-III T-III	inches 96 228 288 348 444	Density pci 0.0666 0.0723 0.0403 0.0403 0.0403	Φ ⁰ 34.0 34.0 34.0	PUT PARAMI Cohesion p/in ² 24.3 43.4	Modulus pci 166 100	0.002	
oil Condition Layer No. Surface 1 2 3 4 5 6 7 8 9 9 10	El. Bottom of Layer ft 115.0 105.0 97.0	Layer Thickness ft 19.0 5.0 5.0 8.0 7.0 7.0	Soil Type CH SC SC ML	Province CP CP CP CP	Avg. N ₆₀ 28 30 30 36 50	T-II T-III T-III T-III	inches 96 228 288 348 444	Density pci 0.0666 0.0723 0.0403 0.0403	Φ° 34.0 34.0	Cohesion p/in ² 24.3	Modulus pci 166 100	0.002	
oil Condition Layer No. Surface 1 2 3 4 5 6 7 8 9 9 10	El. Bottom of Layer ft 115.0 110.0 105.0 97.0 90.0	Layer Thickness ft 19.0 5.0 5.0 8.0 7.0 7.0	Soil Type CH SC SC ML	Province CP CP CP CP	Avg. N ₆₀ 28 30 30 36 50	T-II T-III T-III T-III	inches 96 228 288 348 444	Density pci 0.0666 0.0723 0.0403 0.0403 0.0403	ф° 34.0 34.0 34.0	PUT PARAMI Cohesion p/in ² 24.3 43.4 43.4 Area	Modulus pci 166 100	0.002	3,800,000 psi
oil Condition Layer No. Surface 1 2 3 4 5 6 7 8 9 9 10	El. Bottom of Layer ft 115.0 110.0 105.0 97.0 90.0 90.0	Layer Thickness ft 19.0 5.0 5.0 8.0 7.0 7.0	Soil Type CH SC SC ML	Province CP CP CP CP	Avg. N ₆₀	T-II T-III T-III T-III	inches 96 228 288 348 444 528	Density pci 0.0666 0.0723 0.0403 0.0403 0.0403 0.0403 0.0403 Diameter 2.0 2.5	ф° 34.0 34.0 34.0 34.0 	PUT PARAMI	Modulus pci 166 100	0.002	
oil Condition Layer No. Surface 1 2 3 4 5 6 7 8 9 9 10	El. Bottom of Layer ft 115.0 110.0 105.0 97.0 90.0 90.0 90.0 90.0 90.0 90.0 90	Layer Thickness ft 19.0 5.0 8.0 7.0 7.0 inates	Soil Type CH SC SC ML CH	Province CP CP CP CP	Avg. N ₆₀ 28 30 30 36 50	T-II T-III T-III T-III	inches 96 228 288 348 444 528	Density pci 0.0666 0.0723 0.0403 0.04	ф° 34.0 34.0 34.0 34.0 10 10 10 10 10 10 10 10 10 10 10 10 10	PUT PARAMI	Modulus pci 166 100	0.002	
Soil Condition Layer No. Surface 1 2 3 4 5 6 7 8 9 9 10	El. Bottom of Layer ft 115.0 110.0 105.0 97.0 90.0 90.0	Layer Thickness ft 19.0 5.0 8.0 7.0 7.0 inates	Soil Type CH SC SC ML CH	Province CP CP CP CP	Avg. N ₆₀	T-II T-III T-III T-III	inches 96 228 288 348 444 528	Density pci 0.0666 0.0723 0.0403 0.0403 0.0403 0.0403 0.0403 Diameter 2.0 2.5	ф° 34.0 34.0 34.0 34.0 	PUT PARAMI	Modulus pci 166 100	0.002	
Layer No. Surface 1 2 3 4 5 6 7 8 9 10	El. Bottom of Layer ft 115.0 105.0 97.0 90.0 90.0 90.0 90.0 90.0 90.0 90	Layer Thickness ft 19.0 5.0 8.0 7.0 7.0 inates	Soil Type CH SC SC ML CH	Province CP CP CP CP	Avg. N ₆₀	T-II T-III T-III T-III	inches 96 228 288 348 444 528 	Density pci 0.0666 0.0723 0.0403 0.04	ф° 34.0 34.0 34.0 34.0 34.0 34.0 10 10 10 10 10 10 10 10 10 10 10 10 10	PUT PARAMI	Modulus pci 166 100	0.002	-
Layer No. Surface 1 2 3 4 5 6 7 8 9 10	El. Bottom of Layer ft 115.0 105.0 97.0 90.0 90.0 90.0 90.0 90.0 90.0 90	Layer Thickness ft 19.0 5.0 8.0 7.0 7.0 inates	Soil Type CH SC SC ML CH	Province CP CP CP CP	Avg. N ₆₀	T-II T-III T-III T-III	inches 96 228 288 348 444 528 	Density pci 0.0666 0.0723 0.0403 0.04	ф° 34.0 34.0 34.0 34.0 34.0 34.0 10 10 10 10 10 10 10 10 10 10 10 10 10	PUT PARAMI	Modulus pci 166 100	0.002	
Layer No. Surface 1 2 3 4 5 6 7 8 9 10	El. Bottom of Layer ft 115.0 105.0 97.0 90.0 90.0 90.0 90.0 90.0 90.0 90	Layer Thickness ft 19.0 5.0 8.0 7.0 7.0 inates	Soil Type CH SC SC ML CH	Province CP CP CP CP	Avg. N ₆₀	T-II T-III T-III T-III	inches 96 228 288 348 444 528 	Density pci 0.0666 0.0723 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.05	φο 34.0 3	PUT PARAM	Modulus pci 166 100	0.002	-
Surface 1 2 3 4 5 6 7 8 9 10	El. Bottom of Layer ft 115.0 105.0 97.0 90.0 90.0 90.0 90.0 90.0 90.0 90	Layer Thickness ft 19.0 5.0 8.0 7.0 7.0 inates	Soil Type CH SC SC ML CH	Province CP CP CP CP	Avg. N ₆₀	T-II T-III T-III T-III	inches 96 228 288 348 444 528 	Density pci 0.0666 0.0723 0.0405 0.055	φο 34.0 39.761 82.448 35.2745 260.577 417.394 636.174 931.422 1.319.170	PUT PARAMI	Modulus pci 166 100	0.002	
Soil Condition Layer No. Surface 1 2 3 4 5 6 7 8 9 9 10	El. Bottom of Layer ft 115.0 105.0 97.0 90.0 90.0 90.0 90.0 90.0 90.0 90	Layer Thickness ft 19.0 5.0 8.0 7.0 7.0 inates	Soil Type CH SC SC ML CH	Province CP CP CP CP	Avg. N ₆₀	T-II T-III T-III T-III	inches 96 228 288 348 444 528 	Density pci 0.0666 0.0723 0.0403 0.055 0.055 0.0555 0.0555 0.05555 0.055555 0.055555555	φο 34.0 3	PUT PARAM	Modulus pci 166 100	0.002	3,800,000 psi 30,000,000 psi

North Hill Upper Wall (No soil below wall above slide plane) Lateral Deflection (in)

North Hill Upper Wall (No soil below wall above slide plane) Bending Moment (in-kips)

North Hill Upper Wall (No soil below wall above slide plane) Shear Force (kips)

north hill _____ LPILE Plus for Windows, Version 5.0 (5.0.39) Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method (c) 1985-2007 by Ensoft, Inc. All Rights Reserved _____ This program is licensed to: Margaret Tomeo ECS Path to file locations: I:\Geotechnical\{eProjects}\14400-14499\01-14444\d-Working\FINAL ANALYSIS\LPILE\ Name of input data file: Name of output file: Name of plot output file: Name of runtime _____ Time and Date of Analysis _____ Date: August 27, 2009 Time: 10:33:53 _____ Problem Title _____ North Hill Line F-F Upper Wall _____ Program Options _____ Units Used in Computations - US Customary Units: Inches, Pounds Basic Program Options: Analysis Type 1: - Computation of Lateral Pile Response Using User-specified Constant El Computation Options: Only internally-generated p-y curves used in analysis
Analysis does not use p-y multipliers (individual pile or shaft action only)
Analysis assumes no shear resistance at pile tip
Analysis for fixed-length pile or shaft only
No computation of foundation stiffness matrix elements
Output pile response for full length of pile
Analysis assumes no soil movements acting on pile No additional p-y curves to be computed at user-specified depths Solution Control Parameters: - Number of pile increments 60 Page 1

north hill - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E-05 in 1.0000E+02 in - Maximum allowable deflection = Printing Options: Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (spacing of output points) = 1 _____ Pile Structural Properties and Geometry Pile Length 456.00 in -Depth of ground surface below top of pile = 228.00 in Slope angle of ground surface .00 deg. = Structural properties of pile defined using 2 points
 Depth
 Pile
 Moment of
 Pile
 Modulus of

 X
 Diameter
 Inertia
 Area
 Elasticity

 in
 in
 in**4
 Sq. in
 Ibs/Sq. in

 0.0000
 14.2000000
 910.0000
 26.2000
 30000000.

 456.0000
 14.2000000
 910.0000
 26.2000
 30000000.
 Point 1 ว 2 Soil and Rock Layering Information The soil profile is modelled using 4 layers Layer 1 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = p-y subgrade modulus k for top of soil layer = p-y subgrade modulus k for bottom of layer = 228.000 in 288.000 in 166.000 lbs/in**3 166.000 lbs/in**3 Layer 2 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = p-y subgrade modulus k for top of soil layer = p-y subgrade modulus k for bottom of layer = 288.000 in 348.000 in 100.000 lbs/in**3 100.000 lbs/in**3 Layer 3 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = p-y subgrade modulus k for top of soil layer = p-y subgrade modulus k for bottom of layer = 348.000 in 444.000 in 120.000 lbs/in**3 120.000 lbs/in**3 Layer 4 is stiff clay without free water Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = 444.000 in 550.000 in (Depth of lowest layer extends 94.00 in below pile tip)

north hill						
Effective Unit Weight of Soil vs. Depth						

Effecti	ve unit weight	of soil with	depth defined using	8 points	
Point No.	Depth X in	Eff. Unit Ibs/in*	Weight *3		
1 2 3 4 5 6 7 8	228.00 288.00 288.00 348.00 348.00 444.00 444.00 550.00	. 0403 . 0403 . 0403 . 0403 . 0403	0 0 0 0 0 0		
		Shear S	trength of Soils		
Shear s	strength parame	eters with dep	th defined using 8 p	points	
Point No.	Ìn	Cohesi on c I bs/i n**2	Angle of Friction Deg.	E50 or k_rm	RQD %
1 2 3 4 5 6 7 8 Notes:	228.000 288.000 288.000 348.000 348.000 444.000 444.000 550.000	$\begin{array}{c} . \ 00000 \\ . \ 00000 \\ . \ 00000 \\ . \ 00000 \\ . \ 00000 \\ . \ 00000 \\ . \ 00000 \\ 43. \ 00000 \\ 43. \ 00000 \end{array}$	34.00 34.00 34.00 34.00 34.00 34.00 34.00 .00 .00	. 00200 . 00200	
(2) Va (3) De	alues of E50 ar efault values w	e reported fo ill be genera	ve strength for rock or clay strata. ited for E50 when inpu y for weak rock strat	ut values are	e O.
		L	.oadi ng Type		
Stati c	loading criter	ia was used f	οr computation of p-y	/ curves.	
		Distribu	ited Lateral Loading		
Distrik	outed lateral l	oad intensity	defined using 2 poi	nts	
Poi nt No.	Depth X in	Dist. Loa Ibs/in	d Page 3		

north hill

1	. 000	. 00000
2	228.000	111.00000

_____ Pile-head Loading and Pile-head Fixity Conditions _____ Number of loads specified = 1Load Case Number 1 Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = .000 lbs Bending moment at pile head = .000 in-1bs Axial load at pile head .000 lbs = (Zero moment at pile head for this load indicates a free-head condition) _____ Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 _____ _____ Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified shear force at pile head = .000 lbs Specified moment at pile head = .000 in-l Specified axial load at pile head = .000 lbs .000 in-1bs (Zero moment for this load indicates free-head conditions) Depth Deflect. Moment Shear SI ope Soil Res. Total Es*h V S Х Μ Stress У р F/L lbs-in lbs Rad. lbs/in**2in in lbs/in lbs/in _ _ _ _ _ _ _ _ _ _ _ _ _ 0.000 2.168 -2.5188E-06 -1.3809E-08 -.0081212 1.9652E-08 0.0000 0.0000 7.600 2.106 13.3570 15.8175 -.0081212 . 1042139 0.0000 0.0000 15.200 2.044 240.4260 57.9975 -.0081211 1.8759 0.0000 0.0000 1.982 894.9190 128.2975 0.0000 22.800 -.0081210 6.9823 0.0000 30.400 1.921 2190.5480 226.7175 17.0911 0.0000 -.0081205 0.0000 38.000 1.859 4341.0250 353.2575 -.0081196 33.8695 0.0000 0.0000 45.600 1.797 7560.0620 507.9175 58.9851 0.0000 -.0081180 0.0000 53.200 1.736 12061.3710 690.6975 0.0000 -. 0081152 94.1052 0.0000 60.800 1.674 18058.6640 901.5975 -.0081110 140.8973 0.0000 0.0000 68.400 1.612 25765.6530 1140.6175 -.0081049 201.0287 0.0000

0.0000

76.000	1. 551	35396.0500	north I 1407.7575	ni I I 0080964	276. 1670	0.0000
0.0000 83.600	1. 489	47163. 5670	1703. 0175	0080849	367. 9795	0.0000
0.0000						
91.200 0.0000	1. 428	61281. 9160	2026. 3975	0080698	478. 1336	0.0000
98.800 0.0000	1. 367	77964.8090	2377.8975	0080505	608.2969	0.0000
106. 400 0. 0000	1. 305	97425.9580	2757. 5175	0080261	760. 1366	0.0000
114.000	1. 245	119879.	3165. 2575	0079958	935. 3203	0.0000
0. 0000 121. 600	1. 184	145538.	3601. 1175	0079589	1135. 5153	0.0000
0.0000 129.200	1. 124	174616.	4065.0975	0079143	1362. 3890	0.0000
0.0000 136.800	1.064	207327.	4557. 1975	0078611	1617. 6090	0.0000
0.0000	1.004	243885.	5077. 4175	0077983	1902. 8426	0.0000
0.0000						
152.000 0.0000	. 945040	284504.	5625.7575	0077248	2219. 7573	0.0000
159.600 0.0000	. 886633	329397.	6202.2175	0076393	2570. 0204	0.0000
167.200	. 828923	378778.	6806. 7975	0075408	2955. 2994	0.0000
0.0000 174.800	. 772013	432860.	7439. 4975	0074278	3377. 2617	0.0000
0. 0000 182. 400	. 716020	491858.	8100. 3175	0072991	3837. 5747	0.0000
0.0000 190.000	. 661068	555985.	8789. 2575	0071532	4337. 9059	0.0000
0.0000 197.600	. 607292	625455.	9506. 3175	0069888	4879. 9227	0.0000
0.0000 205.200	. 554839	700481.	10251. 4975	0068042	5465. 2925	0.0000
0.0000						
212. 800 0. 0000	. 503868	781278.	11024. 7975	0065979	6095.6827	0.0000
220. 400 0. 0000	. 454550	868058.	11826. 2175	0063684	6772.7608	0.0000
228.000 0.0000	. 407069	961036.	12443. 1000	0061138	7498. 1941	0.0000
235.600	. 361621	1057193.	12361. 4986	0058328	8248. 4304	-76. 5115
1608. 0052 243. 200	. 318409	1148931.	11465.0799	0055258	8964. 1864	-159. 3881
3804. 3787 250. 800	. 277629	1231462.	9985.0342	0051944	9608. 1133	-230. 0976
6298.8440 258.400	. 239454	1300703.	8033. 5704	0048420	10148. 3456	-283. 4455
8996. 2384 266. 000	. 204031	1353573.	5761. 4080	0044725	10560. 8418	-314. 4920
11714.5784 273.600	. 171472	1388277.	3315.0958	0040909	10831. 6106	-329. 2744
14594.1324						
281. 200 17471. 2736	. 141850	1403962.	824. 7015	0037022	10953. 9903	-326. 0925
288.800 20942.5400	. 115199	1400812.	-1620. 7271	0033118	10929. 4148	-317.4413
296. 400 25684. 8123	. 091511	1379327.	-4002.2265	0029248	10761. 7827	-309. 2691
304.000	. 070742	1339978.	-6318. 7813	0025463	10454.7771	-300. 3506
32267.5878 311.600	. 052807	1283282.	-8557.8224	0021811	10012. 4169	-288. 8707
			Page	5		

		north	hill		
41574.0140 319.200 .037588	1209900.	-10671.8147	0018341	9439. 8758	-267. 4431
54074. 5321 326. 800 . 024929 71732. 8895	1121070.	-12582. 2101	0015097	8746. 8101	-235. 2926
334.400 .014641 80644.8794	1018650.	-14066. 7023	0012118	7947. 7086	-155. 3633
342.000 .006509 86420.8794	907256.	-14938.3510	0009437	7078. 5919	-74.0179
349.600 .000297 114971.	791587.	-15236. 6676	0007073	6176. 1187	-4. 4864
357.200004241 121902.	675659.	-14995. 2036	0005030	5271. 6236	68.0296
364.800007350 128833.	563660.	-14263. 2497	0003305	4397. 7864	124. 5898
372.400009265 135764.	458857.	-13160. 8471	0001882	3580. 0962	165. 5161
380.000010210 142695.	363615.	-11803. 3923	-7.3726E-05	2836. 9967	191. 7088
387.600010386 149627.	279446.	-10297.8783	1.5784E-05	2180. 2917	204. 4791
395.200009971 156558.	207087.	-8740. 3745	8. 3507E-05	1615. 7362	205.3904
402.800009117 163489.	146592.	-7214.6412	. 0001327	1143. 7409	196. 1184
410. 400 007953 170420.	97424.7750	-5791.7204	. 0001667	760. 1274	178. 3344
418.000006583 177351.	58557.9986	-4530. 3031	. 0001884	456. 8811	153. 6175
425.600005089 184283.	28564. 1682	-3477. 6462	. 0002005	222.8633	123. 3975
433.200003535 191214.	5697.7765	-2670. 7938	. 0002053	44. 4552	88. 9321
198145.	-12031.8979	-2137.8462	. 0002044	93. 8752	51. 3173
1. 2796E+07	-26797.4855	791.5722	. 0001990	209.0793	719. 5823
456.000 .001057 3336299.	0.0000	0.0000	. 0001953	0.0000	-927.8908

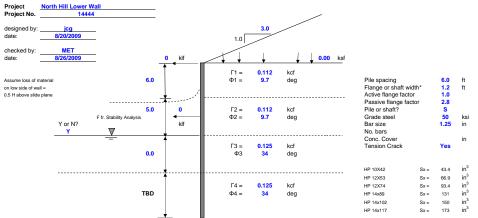
Output Verification:

Computed forces and moments are within specified convergence limits.

Output Summary for Load Case No. 1:

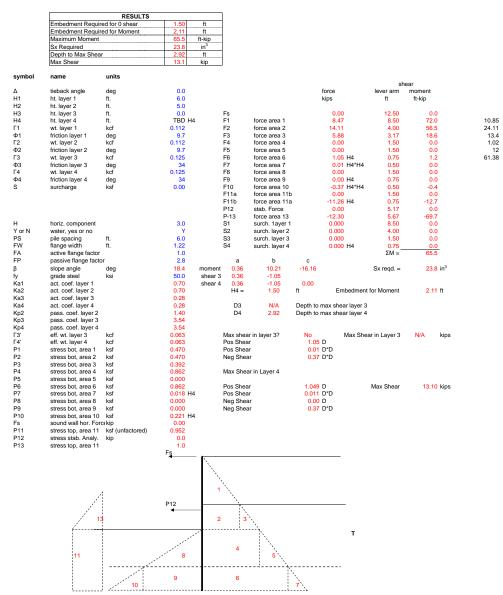
Pile-head deflection	=	2: 10/0122/ 111
	=	
Maximum bending moment	=	1403962. Ibs-in
Maximum shear force	=	
Depth of maximum bending moment	=	281.20000 in
	=	349.60000 in
Number of iterations	=	14
Number of zero deflection points	=	2

Summary of Pile Response(s)

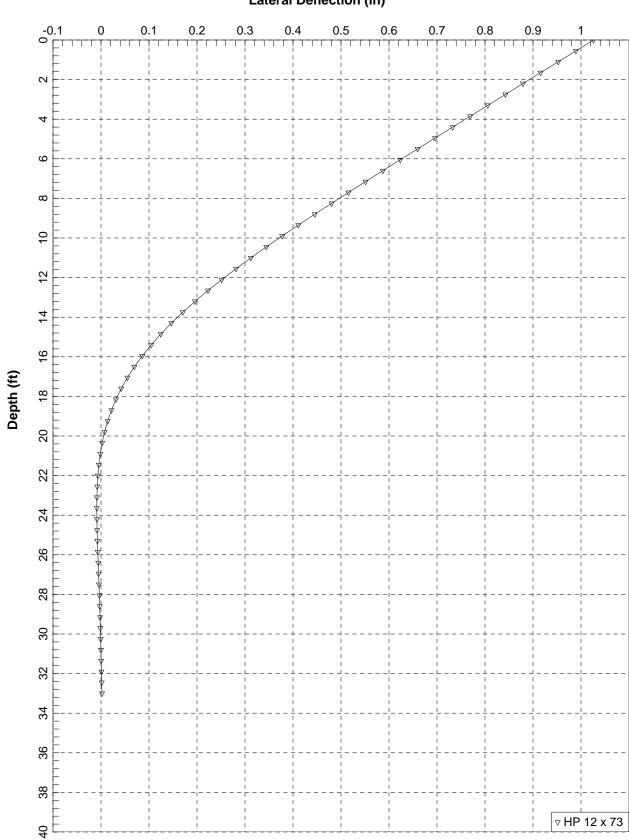

north hill

Definition of Symbols for Pile-Head Loading Conditions:

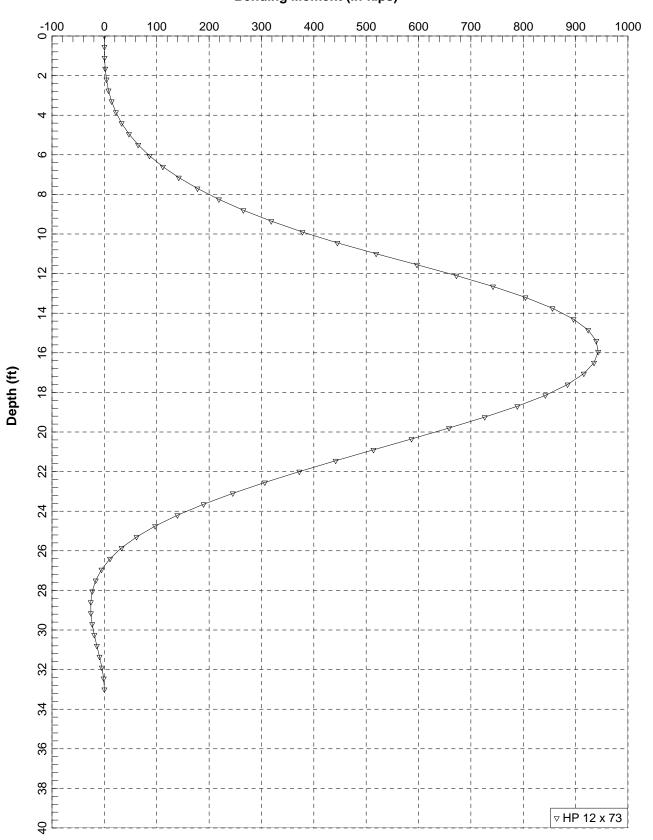
Type $4 = \text{Defle}$		V = Pil S = Pil	e-head displa e-head Moment e-head Shear e-head Slope, Stiffness o	Force Ibs radians	d in-Ibs/rad
Load Pile-Hea Type Conditio 1		Axi al Load I bs	Pile-Head Deflection in	Maximum Moment in-Ibs	Maximum Shear Ibs
1 V= 0.	000 M= 0.000	0.0000	2. 1675	1403962.	-15236. 6676


The analysis ended normally.

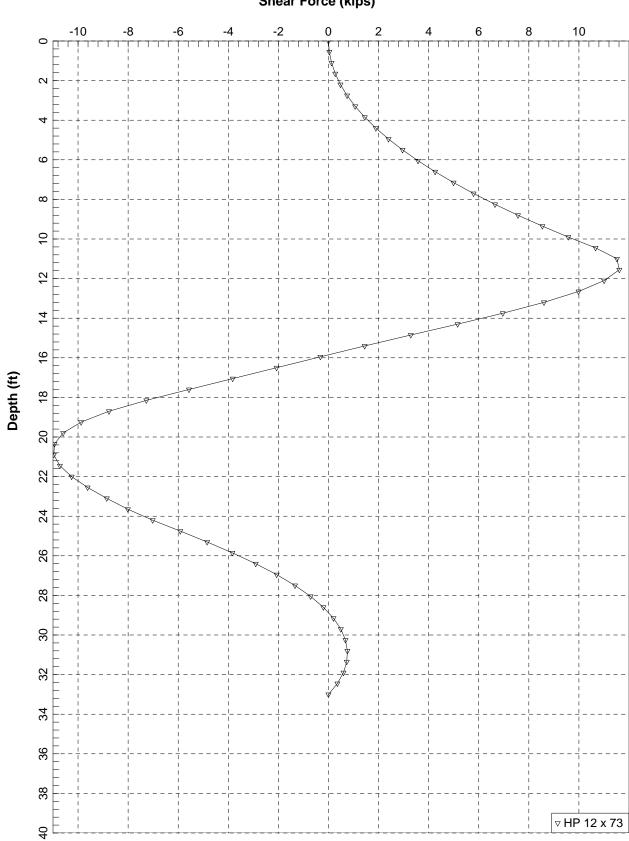
Design of Pile or Drilled Shaft Walls for North Hill MHP


Instructions 1. Enter values indicated by bold blue.

Indicate Y or N for water table.
 If the pile does not need to penetrate Layer 3, rerun and enter 0.0 depth for Layer 3.



* Use flange width (driven) or diameter of predrilled hole for piles


	LPILE/GROUP DATA INPUT FORM				North Hill	Iorth Hill MHP Project No.				14444			
Structura	L Engine	ore Pla	aso Ente	or Info in	Shador	Boyes		1					
Siluciula					Shauet								
						Input Required N	oted in Blue		Red Values Ar		ica		08/13/2009
Bridge No.	NH	Pier No.	Lower W	Top of Pi	ile/Shaft El.	127.0	1			By: Checked:	jcg MET	Date:	
							-						
Indicate	Analysis Ty	pe Required	X	L/PILE Sing	le Pile/Shaft	Free head				Boring No.	Profi	le F-F'	
				L/PILE Sing	le Pile/Shaft	Fixed head							
				GROUP Fix	ed Head								
				l		121	Top of Grou	und El. (Assu	mes 6-ft. deep	o Tension Cra	ack)		
	Indicate	Load Type	X	Single Pile/S Group Load		1	No Bilos/SI	hafts for GRO	סוור				
				Group Load			NO. Flies/Si						
		Pier Dia. ft		1	Pile Size	14*73	1	enter triangu	lar load as 2.	54 klf to a dep	oth of 11'		
							-	-					
	Tranverse S	pacing, ft		Longi	t. Spacing, ft		Do not enter	r spacing for L	PILE analysis	6.			
							-		ndary/tertiary				
			for Axial C	apacity An	alysis , kips	0	for dd		rent which loa	nd group is the	e dominant		
Include couple						(i	4	load group.		(T	->	1	
	oad Conditio				Load Condi	tions (Secondary	0		Load Conditi		<i>'</i>)	1	
Fv (FV)		kips (lbs)		Fv (FV)		kips (lbs)		Fv (FV) Fy (FL)		kips (lbs)			
Fy (FL) Fz (FT)		kips (lbs)		Fy (FL) Fz (FT)		kips (lbs) kips (lbs)		Fy (FL) Fz (FT)		kips (lbs) kips (lbs)		-	
Mv (TOR)		kips (lbs) kip-ft (lb-in)		Mv (TOR)		kip-ft (lb-in)		Mv (TOR)		kip-ft (lb-in)		-	
My (MT)		kip-ft (lb-in)		My (MT)		kip-ft (lb-in)		My (MT)		kip-ft (lb-in)			
Mz (ML)		kip-ft (lb-in)		Mz (ML)		kip-ft (lb-in)		Mz (ML)		kip-ft (lb-in)			
					-					E ₅₀ req	uired for CL,	CH, MH, & R	
Soil Condition	S	Wa	ater Table El.	109.0	ft			LPILE	/ GROUP INI	PUT PARAM	ETERS		
	1		1	1	1	1	•	1	1				
Layer No.	El. Bottom	Layer	Soil Type	Province	Avg. N ₆₀	Substrat.	Depth	Density	Φ°	Cohesion	Modulus	E ₅₀	
	of Layer	Thickness			-		inches	pci		p/in ²	pci		
Surface	ft	ft	011	0.5		T 11	72						
1	116.0 109.0	5.0 7.0	CH SC	CP CP	28 30	T-II T-III	132 216	0.0666	34.0	24.3	166	0.002	
3	103.0	6.0	SC	CP	30	T-III	288	0.0403	34.0		100		
4	94.0	9.0	ML	CP	36	T-III							
5							396	0.0403					
	91.0	3.0	СН	CP	50	T-III	396 432	0.0403	34.0	43.4	120	0.002	
6	91.0		СН	СР	50	T-III				43.4		0.002	
6 7	91.0		СН	СР	50	T-III				43.4		0.002	
	91.0		СН	СР	50	T-III				43.4		0.002	
7 8 9	91.0		СН	СР	50	T-III				43.4		0.002	
7 8 9 10	91.0		CH	CP	50	T-III				43.4		0.002	
7 8 9	91.0		СН	CP	50	T-III				43.4		0.002	
7 8 9 10	91.0		СН	CP	50	T-III				43.4		0.002	
7 8 9 10	91.0	3.0	СН	CP				0.0403	34.0			0.002	
7 8 9 10		3.0	СН	CP		T-III		0.0403	34.0	Area		0.002	,800,000 psi
7 8 9 10		3.0	CH	CP		×	432	0.0403	34.0	Area in ²		M concrete = 3	,800,000 psi 30,000,000 psi
7 8 9 10	Pile Coord	3.0		CP		x	432	0.0403	34.0	Area in ² 452		M concrete = 3	
7 8 9 10	Pile Coord	3.0		CP		×	432	0.0403	34.0 Mom. of I. in ⁴ 16,286 39,761	Area in ² 452 707		M concrete = 3	
7 8 9 10	Pile Coord Pile No. 1 2 3	3.0		CP		×	432 432 1000000000000000000000000000000000000	0.0403	34.0 Mom. of I. in ⁴ 16,286 39,761 82,448 152,745 260,577	Area in ² 452 707 1,018 1,385 1,810		M concrete = 3	
7 8 9 10	Pile Coord Pile No. 1 2	3.0		CP		×	432 longitudinal y	0.0403 Diameter 2.0 2.5 3.0 3.5 4.0 4.5	34.0 Mom. of I. in ⁴ 16,286 39,761 82,448 152,745 260,577 417,394	Area in ² 452 707 1,018 1,385 1,810 2,290		M concrete = 3	
7 8 9 10	Pile Coord Pile No. 1 2 3	3.0		<u>СР</u>		×	432 longitudinal y > 4 +, + ML	0.0403 Diameter 2.0 2.5 3.0 3.5 4.0 4.5 5.0	34.0 Mom. of I. in ⁴ 16,286 39,761 82,448 152,745 260,577 417,394 636,174	Area in ² 452 707 1,018 1,385 1,810 2,290 2,827		M concrete = 3	
7 8 9 10	Pile Coord Pile No. 1 2 3	3.0				×	432 longitudinal y > 4 +, + ML z	0.0403 0.0403 Diameter 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5	34.0 Mom. of I. in ⁴ 16,286 39,761 82,448 152,745 260,577 417,394 636,174 931,422	Area in ² 452 707 1,018 1,385 1,810 2,290 2,827 3,421		M concrete = 3	
7 8 9 10	Pile Coord Pile No. 1 2 3	3.0		CP		×	432 longitudinal y > 4 +, + ML	0.0403 0.0403 Diameter 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0	34.0 Mom. of I. in ⁴ 16,286 39,761 82,448 152,745 260,577 417,394 636,174 931,422 1,319,170	Area in ² 452 707 1,018 1,385 1,810 2,290 2,827 3,421 4,072		M concrete = 3	
7 8 9 10	Pile Coord Pile No. 1 2 3	3.0		CP MT		×	432 longitudinal y > 4 +, + ML z	0.0403 0.0403 Diameter 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5	34.0 Mom. of I. in ⁴ 16,286 39,761 82,448 152,745 260,577 417,394 636,174 931,422	Area in ² 452 707 1,018 1,385 1,810 2,290 2,827 3,421		M concrete = 3	
7 8 9 10	Pile Coord Pile No. 1 2 3	3.0				×	432 longitudinal y > 4 +, + ML z	0.0403 0.0403 Diameter 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 7.0	34.0 Mom. of I. in ⁴ 16,286 39,761 82,448 152,745 260,577 417,394 636,174 931,422 1,319,170 2,443,926	Area in ² 452 707 1,018 1,385 1,810 2,290 2,827 3,421 4,072 5,542		M concrete = 3	

North Hill Lower Wall (No soil above slide plane below wall) Lateral Deflection (in)

North Hill Lower Wall (No soil above slide plane below wall) Bending Moment (in-kips)

North Hill Lower Wall (No soil above slide plane below wall) Shear Force (kips)

north hill lower _____ LPILE Plus for Windows, Version 5.0 (5.0.39) Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method (c) 1985-2007 by Ensoft, Inc. All Rights Reserved _____ This program is licensed to: Margaret Tomeo ECS Path to file locations: I: \Geotechni cal \{eProj ects}\14400-14499\01-14444\d-Worki ng\FI NAL ANALYSI S\LPI LE\ Name of output file: north hill lower.lpd Name of plot output file: north hill lower.lpp Name of runtime file: north hill lower.lpp _____ Time and Date of Analysis _____ Date: August 27, 2009 Time: 10:48:22 _____ Problem Title North Hill Line F-F Lower Wall _____ Program Options Units Used in Computations - US Customary Units: Inches, Pounds Basic Program Options: Analysis Type 1: - Computation of Lateral Pile Response Using User-specified Constant El Computation Options: Only internally-generated p-y curves used in analysis
Analysis does not use p-y multipliers (individual pile or shaft action only)
Analysis assumes no shear resistance at pile tip
Analysis for fixed-length pile or shaft only
No computation of foundation stiffness matrix elements
Output pile response for full length of pile
Analysis assumes no soil movements acting on pile No additional p-y curves to be computed at user-specified depths Solution Control Parameters: Number of pile increments 60 Page 1

north hill lower - Maximum number of iterations allowed = 100 - Deflection tolerance for convergence = 1.0000E-05 in - Maximum allowable deflection = 1.0000E+02 in Printing Options: Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (spacing of output points) = 1 _____ Pile Structural Properties and Geometry Pile Length 396.00 in = Depth of ground surface below top of pile = 132.00 in Slope angle of ground surface .00 deg. = Structural properties of pile defined using 2 points
 Depth
 Pile
 Moment of
 Pile
 Modulus of

 X
 Diameter
 Inertia
 Area
 Elasticity

 in
 in
 in**4
 Sq. in
 Ibs/Sq. in

 0.0000
 14.0000000
 734.0000
 21.5000
 30000000.

 396.0000
 14.0000000
 734.0000
 21.5000
 30000000.
 Point 1 ว 2 Soil and Rock Layering Information The soil profile is modelled using 4 layers Layer 1 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = p-y subgrade modulus k for top of soil layer = p-y subgrade modulus k for bottom of layer = 132.000 in 216.000 in 166.000 lbs/in**3 166.000 lbs/in**3 Layer 2 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = p-y subgrade modulus k for top of soil layer = p-y subgrade modulus k for bottom of layer = 216.000 in 288.000 in 100.000 lbs/in**3 100.000 lbs/in**3 Layer 3 is sand, p-y criteria by Reese et al., 1974 Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = p-y subgrade modulus k for top of soil layer = p-y subgrade modulus k for bottom of layer = 288.000 in 396.000 in 120.000 lbs/in**3 120.000 lbs/in**3 Layer 4 is stiff clay without free water Distance from top of pile to top of layer = Distance from top of pile to bottom of layer = 396.000 in 550.000 in (Depth of lowest layer extends 154.00 in below pile tip)

Page 2

north hill lower Effective Unit Weight of Soil vs. Depth

_ _ _ _ _ _ _ _ _ _ _ _

Effectiv	/e unit weight	of soil with	n depth (defined	usi ng	8 poin	ts
Point No.	Depth X in	Eff. Unit Ibs/in*	Weight **3		-	·	
1 2 3 4 5 6 7 8	132.00 216.00 216.00 288.00 288.00 396.00 396.00 550.00	. 0723 . 0723 . 0403 . 0403 . 0403 . 0403 . 0403 . 0403	30 30 30 30 30 30 30				
		Shear S	Strength	of Soil	s		
Shear st	trength parame	eters with dep	oth defi	ned usir	ng 8 p	oi nts	
Point No.	Depth X in	Cohesion c Ibs/in**2	Angl e	of Fric Deg.	ction	E50 k_ri	
1 2 3 4 5 6 7 8	132.000 216.000 216.000 288.000 288.000 396.000 396.000 550.000	$\begin{array}{c} . \ 00000 \\ . \ 00000 \\ . \ 00000 \\ . \ 00000 \\ . \ 00000 \\ . \ 00000 \\ . \ 00000 \\ 43. \ 00000 \\ 43. \ 00000 \end{array}$		$\begin{array}{c} 34.\ 00\\ 34.\ 00\\ 34.\ 00\\ 34.\ 00\\ 34.\ 00\\ 34.\ 00\\ 34.\ 00\\ .\ 00\\ .\ 00\\ .\ 00\end{array}$. 0020	
Notes:							
(2) Val (3) Def	nesion = uniax ues of E50 ar fault values w) and k_rm are	re reported fo vill be genera	or clay : ated for	strata. E50 whe	en inpu	t value	
			_oadi ng	Гуре			
	oading criter		for comp	utati on	of p-y	curves	
		Distribu	uted Late	eral Loa			
Distribu	uted Lateral I	oad intensity	y define	d using	2 poi	nts	
Point No.	Depth X in	Dist. Loa Ibs/in		ge 3			

north hill lower _ . 00000 1 . 000 2 132,000 179.00000 _____ Pile-head Loading and Pile-head Fixity Conditions Number of loads specified = 1Load Case Number 1 Pile-head boundary conditions are Shear and Moment (BC Type 1) Shear force at pile head = Bending moment at pile head = .000 lbs .000 in-1bs Axial load at pile head .000 lbs = (Zero moment at pile head for this load indicates a free-head condition) _____ Computed Values of Load Distribution and Deflection for Lateral Loading for Load Case Number 1 ------_____ Pile-head boundary conditions are Shear and Moment (BC Type 1) Specified moment at pile head = .000 lbs Specified axial load at pile head = .000 lbs (Zero moment for this load indicates free-head conditions) Depth Deflect. Moment Shear SI ope Soil Res. Total Es*h V S Х Μ Stress У р F/L lbs-in lbs Rad. lbs/in**2in in lbs/in lbs/in _____ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ 0.000 1.026 -4.4898E-07 0.0000 -.0055610 4.2819E-09 0.0000 0.0000 6.600 . 989314 24.3664 33.2269 -.0055610 . 2323769 0.0000 0.0000 13.200 . 952611 438.5947 121.8319 -.0055609 4.1828 0.0000 0.0000 19.800 . 915910 1632.5471 269.5069 0.0000 -.0055606 15.5693 0.0000 26.400 . 879211 3996.0855 476.2519 -. 0055598 38.1098 0.0000 0.0000 7919.0719 33.000 . 842521 742.0669 -.0055580 75.5225 0.0000 0.0000 39.600 13791.3682 1066.9519 . 805846 -.0055547 131.5253 0.0000 0.0000 46.200 . 769198 22002.8366 1450.9069 0.0000 -. 0055494 209.8363 0.0000 52.800 . 732594 32943.3390 1893.9319 -. 0055411 314.1735 0.0000 0.0000 59.400 . 696056 47002. 7374 2396.0269 -. 0055291 448.2550 0.0000 0.0000

66.000	. 659610	64570. 8937	north hill 2957.1919	lower 0055124	615. 7987	0.0000
0.0000 72.600	. 623292	86037.6701	3577. 4269	0054899	820. 5227	0.0000
0.0000 79.200	. 587144	111793.	4256.7319	0054602	1066. 1451	0.0000
0.0000 85.800 0.0000	. 551217	142227.	4995.1069	0054221	1356. 3838	0.0000
92.400 0.0000	. 515571	177728.	5792.5519	0053742	1694. 9569	0.0000
99.000 0.0000	. 480278	218688.	6649.0669	0053148	2085. 5824	0.0000
105.600 0.0000	. 445416	265496.	7564.6519	0052422	2531. 9784	0.0000
112.200 0.0000	. 411080	318542.	8539. 3069	0051547	3037.8629	0.0000
118.800 0.0000	. 377374	378215.	9573.0319	0050503	3606. 9538	0.0000
125.400 0.0000	. 344417	444906.	10665.8269	0049269	4242. 9693	0.0000
132.000 0.0000	. 312339	519004.	11518.6500	0047825	4949. 6274	0.0000
138. 600 1390. 2745	. 281288	596952.	11614.7742	0046152	5693.0010	-59. 2527
145. 200 3284. 2352	. 251418	672319.	11006. 3820	0044250	6411. 7597	-125. 1086
151. 800 5470. 5932	. 222878	742236.	9983.8857	0042130	7078. 5456	-184. 7388
158. 400 7852. 2347	. 195806	804106.	8605.4885	0039813	7668. 5868	-232. 9573
165.000 10282.5985	. 170325	855829.	6961.0353	0037325	8161. 8523	-265. 3618
171. 600 12642. 2322	. 146537	895992.	5159.0615	0034700	8544.8806	-280. 6908
178. 200 15142. 3514	. 124522	923928.	3290.0054	0031972	8811. 3036	-285. 6898
184. 800 17283. 5804	. 104334	939420.	1445. 5974	0029180	8959.0448	-273. 2217
191. 400 20204. 0140	. 086004	943010.	-324.8514	0026359	8993. 2835	-263. 2779
198.000 25283.2131		935132.	-2072.7700	0023544	8918. 1507	-266. 3944
204.600 31811.4508	. 054926	915649.	-3825.5122	0020770	8732. 3516	-264. 7396
211. 200 41352. 7076	. 042123	884635.	-5570. 1098	0018072	8436. 5739	-263. 9264
217.800 53512.8921	. 031070	842124.	-7272. 4026	0015485	8031. 1553	-251. 9200
224. 400 61022. 3209	. 021684	788639.	-8765.3282	0013041	7521.0834	-200. 4817
231.000 65378.3209	. 013857	726422.	-9879.8808	0010770	6927.7270	-137. 2614
237.600 69734.3209	. 007467	658225.	-10593.1899	0008695	6277.3491	-78. 8928
244.200 74090.3209	. 002379	586592.	-10941.6684	0006830	5594.1974	-26. 7067
250. 800 78446. 3209	001548	513795.	-10969.0709	0005181	4899. 9511	18. 4030
257.400 82802.3209	004459	441800.	-10723.7215	0003748	4213. 3498	55.9453
	006496		-10255.9992	0002529	3549. 9894	85. 7887
270. 600	007797	306421.	-9616. 1314 Page	0001511 5	2922. 2676	108. 1106

north hill lower									
91514.320	9								
277.200 95870.320	008491	245309.	-8852.3302	-6.8460E-05	2339. 4573	123. 3443			
283.800	008701	189570.	-8009. 2796	-3.2875E-06	1807. 8871	132. 1255			
100226. 290. 400	008535	139586.	-7019, 1622	4.6041E-05	1331. 2047	167. 9101			
129846.	006555	139360.	-7019.1022	4.0041E-03	1331.2047	107.9101			
297.000 135073.	008093	96916. 9334	-5918. 4960	8.1484E-05	924.2759	165. 6251			
303.600	007459	61462.1748	-4848.6699	. 0001052	586. 1515	158. 5646			
140300. 310. 200	006704	32914. 4912	-3837.6022	. 0001194	313. 8984	147.8195			
145527.	000704	32914.4912	-3837.0022	. 0001194	313. 8984	147.8195			
316.800	005884	10805.8260	-2906. 3079	. 0001259	103. 0528	134.3909			
150755. 323. 400	005042	-5448.7733	-2069. 5981	. 0001267	51, 9638	119. 1576			
155982.	004011	1/510 0/00	100/ 0501	0001004	157 4707	100 0540			
330.000 161209.	004211	-16512.8688	-1336. 9591	. 0001234	157. 4797	102.8543			
336.600	003413	-23096.6329	-713. 5471	. 0001175	220. 2676	86.0585			
166436. 343. 200	002660	-25931.6901	-201.2384	. 0001101	247. 3049	69. 1866			
171663.									
349.800 176891.	001959	-25752.9803	200. 3188	. 0001024	245. 6006	52.4974			
356.400	001308	-23287.4821	492.7009	9.5048E-05	222.0877	36. 1032			
182118. 363.000	_ 000704	-19249. 3289	677.7966	8.8674E-05	183. 5767	19, 9864			
187345.					103. 3707				
369.600 192572.	000138	-14340. 5665	757.0296	8.3640E-05	136. 7629	4.0236			
376. 200	. 000400	-9256. 5382	730. 7535	8.0103E-05	88. 2776	-11. 9860			
197799. 382.800	. 000919	-4694.6206	597.8617	7.8013E-05	44. 7716	-28, 2842			
203027.	. 000919	-4094.0200	577.0017	7.0013E-05	44.7710	-20. 2042			
389.400	. 001430	-1364.7638	355. 6531	7.7104E-05	13.0155	-45. 1123			
208254. 396.000	. 001937	0.0000	0.0000	7.6900E-05	0.0000	-62.6613			
106741.		2. 0000	2. 2200						

Output Verification:

Computed forces and moments are within specified convergence limits.

Output Summary for Load Case No. 1:

Pile-head deflection		1.02601627 in
Computed slope at pile head	=	00556099
	=	943010.00822 lbs-in
Maximum shear force		11614.77420 Ibs
Depth of maximum bending moment	=	191.40000 in
Depth of maximum shear force	=	138.60000 in
Number of iterations	=	14
Number of zero deflection points	=	2

Summary of Pile Response(s)

north hill lower

Definition of Symbols for Pile-Head Loading Conditions:

Type 2 = S Type 3 = S Type 4 = D	hear and Mo hear and SI hear and Ro eflection a eflection a	ope, t. Stiffness, nd Moment,	V = Pil S = Pil	e-head displa e-head Moment e-head Shear e-head Slope, Stiffness o	Force 1bs radi ans	lin-Ibs/rad
Load Pile Type Cond	-Head Pi ition Co 1	le-Head ndition 2	Axi al Load I bs	Pile-Head Deflection in	Maximum Moment in-Ibs	Maximum Shear Ibs
1 V=	0.000 M=	0. 000	0. 0000	1. 0260	943010.	11614. 7742

The analysis ended normally.