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Research Impact Statement: Extreme events pose a challenge to Coastal Southea st Virginia. A 2–3 times 
increase in 24- and 48-h precipitation intensity resulting in up to 50% increas e in flood flows is likely in the 

future. 

ABSTRACT: Despite the advances in climat e change modeling, extreme events pose a challenge to develop 
approaches that are relev ant for urban stormwater infrastructure designs and best mana gement practices. The 

study first investigates the statistical methods applied to the la nd-based daily precipitation series acquired from 
the Global Historical Clima tology Network-Daily (GHCN-D). Additional anal ysis was carried out on the simu -

lated Multivariate Adaptive Construc ted Analogs (MA CA)-based downscaled daily extreme prec ipitation of 15 
General Circulation Models and We ather Research and Forecas ting-based hourly extreme precipitation of North 

American Regional Reana lysis to discern the return period of 24-hr and 48-hr events. We infer that the GHCN -

D and MACA-based precipitation reveals increasing trends in annual and seasonal extreme daily precipitat ion. 
Both BCC-C SM1-1-m and GFDL-ESM2M models revealed that the mag nitude and frequency of extreme precipi -

tation events are projected to increase between 2016 and 2099. We conclude that the future scenarios show an 
increase in magnitudes of extreme precipitation up to three times across southeastern Virginia resulting in 

increased discharge rates at selected gauge locations. The depth-duration -frequency curve predicted an increase 
of 2–3 times i n 24- and 48-h precipitation intensity, higher peaks, and indicat ed an increase of up to 50% in 

flood magnitude in future scenar ios. 

(KEYWORDS: precipitat ion; extremes; IDF analysis; peak flows; climate chang e; coastal Vir ginia.) 

INTRODUCTION human-induced lan d use and climat e changes (Min 
et al. 2011; Wuebbles et al. 2014). 

The impact of extreme and frequent precipitation 
Globally, increased frequency and magnitude of events over urban areas due to climate change is 

extreme prec ipitation even ts have become a reg ular more significant, as these areas are the centers of 
phenomenon in the past two decades (K arl and human activities (Rosenzweig et al. 2010; Mishra 

Knight 1998; Osborn et al. 2000; Sen Roy and Balling et al. 2015; Ali and Mishra 2018). Urban centers are 
2004; Solomon et al. 2007; Camici et al. 2013; Maurer the focal point of climate change adaptat ion due to 
et al. 2018; Muk herjee et al. 2018). The impacts due rapidly changing conditions arising from global 
to these changes are expecte d to be intensified by the warming (Brown 2001). The populat ion in urb an 
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PRECIPITATION EXTREMES AND FLOOD FREQUENCY IN A CHANGING CLIMATE IN SOUTHEASTERN VIRGINIA 

areas is expected to increase to 60% by 2030 and 70% 
by 2050 (World Health Organization 2014). Hence , 
the adequacy of the built infrastructure in urban 
areas is dependent on resilient designs and better 
understanding of extreme precipitation characteris -

tics. The detailed understanding of extrem e precipita -

tion characterist ics is essential to plan and man age 
these infras tructures in the urban en vironment (Mis -

hra and Lettenmaier 2011; Camici et al. 2013). These 
infrastructure systems often fail to ac commodate 

extreme precipitat ion-generated maximum floods due 
to the traditional consideration of constant statistical 

parameters of the hydrologic variables (Denault et al. 
2002). While conside ring the design parameters, the 

stationarity principles ignore the increases in both 
intensities and magnitudes of precipitation. The 
application of the depth-duration-freq uency (DDF) 

approach is a standard pract ice in designing hydro-

logic systems that incorporate magn itude, frequenc y, 
and duration of precipitation events (Liew et al. 
2014; Alam and Elshorbag y 2015). However, changes 
in the hydrologic cycle, which mainly includes precip -

itation, surface runoff, streamflow, and groundwater 
or recharg e, are exclusively responsible for flooding 
conditions, and therefore, apply ing the DDF approach 
needs to be adjusted with a high spat ial and temporal 
analysis of observed and simulated precipitation and 
runoff data. 

However, attempts to charact erize trend s in pre-

cipitation extremes are hindered by a l ack of long-

term and high-resolution climate and hydrological 
variables in urban areas. Fewer weather stati ons, 

uncertainties in measuremen ts, and the period of 
record compound the problems in detecting trends as 

well as performing the attribut ion analysis (Groisman 
and Easterling 1994) . In addition to these challenges, 

several other factors complicate the robust and com -

pelling pattern detection of extreme prec ipitation. 
The non-normal distribution, serial correlation , out-

liers, and missing da ta can influen ce the trend anal y-

sis of stati stical significan ce (Khaliq et al. 2009; 
McAfee et al. 2013). Thus, the cumulative role of 

these factors contrib utes to a high level of disagree -

ment regarding the magnitude and direc tion of pre -

cipitation events in urban areas. Particularly, small er 
catchments in the coast al region that are und er a 
constant risk of flooding, either through high-stage 
streams flowing from inland or increases in mean sea 

level, are poorly understood due to the la ck of obser -

vational points and modeling efforts . 
Gridded datasets of precipitation and hydrologic 

variables are often developed to overcom e the above 
shortcomings for these areas and to prov ide a more 

geographically complete weather and climate assess -

ment. Additionally, the runoff generated from heavy 
precipitation events is difficult to estim ate because of 

topographic and land surface hydrological condit ions 
in develope d areas. There are differenc es in both cli -

mate and hydrological model predictions and these 
differences propagate from the resp ective models, 

which may then contribute some level of inconsi s -

tency among the gridded datasets of climat e and 
hydrological variables (Hofstra et al. 2009) . Arr iaga-

Ramırez and Cavazos (2010) found increased seas onal 
and annual trends using monthly precipitat ion at 
spatial scales of no rthwest Mexico and southw est 
United States (U.S.) . Mishr a and Lettenmaier (2011) 
and Mishr a et al. (2015) estim ated the linear trends 

of histor ical precipitation in the urb an and surround-

ing nonurban areas of the U.S. McAfee et al. (2013, 
2014) inve stigated the trend using both station- and 
grid-based precipitation from 1950 to 2010 and 
reported temporal changes in the trend s alon g with 

substantial differences among the gr idded datasets in 
terms of intensity and interannual variability in 
Alaska. Chen and Frauenfeld (2014 ) applied Coup led 
Model Intercomparis on Project Phase 5 (C MIP5) mod -

els to capture historical precipitation trends and 
future predictions using Represen tative Concentra -

tion Pathways (RCP) scenar ios. However, the mean 
of the CMIP5 models was unable to capture the mag -

nitude for multi-decadal precipitat ion variability due 
to coarse scale precipitation estimates . Cam ici et al. 
(2013) revealed that downscaled General Circulation 

Models (GCMs) and downscali ng approach es could be 
a factor in evaluating and predicting annual 
precipitation extremes. The possibility of capturin g 
and forecasting these trends increases with 
increased invo lvement of down scaled GCMs (Cretat 

et al. 2014). 
There is a critical need in understanding extreme 

precipitation patterns and resultant peak runoff due 
to the presence o f the largest naval base and other 

security installations in southeas tern Virginia. We 
performed a comprehensive eval uation of precipita -

tion trends in southeastern Virginia by examining 
the records of long-term precipitation at station loca -

tions from the Global Historic al Climatology Net-

work-Daily (GHCN-D) and by performing a 
hydrological simulation analysis in the James River 
Basin (for streamflow measuremen ts). Using both sta-

tion-based and model-based downscaled gridded pre -

cipitation data, we investigated the magnitude, 
distribution, and direction of the extreme precipita-

tion and streamflow characterist ics for both historical 
and future periods. We used historical and future 
design storm eve nts to generate flood frequenc y 
curves that reflect historical and future chang es in 
rainfall intensity for 1950–2099. We included Multi-

variate Adaptive Construc ted Analogs (MACA)-ba sed 
downscaled precipitat ion from GCMs of the CMIP5 
products to eval uate the capab ility of the model s and 
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capture th e historical events, to asse ss uncertai nties 
in characterizing precipitation patterns, and to fore -

cast the future extreme precipitat ion events. We 
investigated the changes in streamflow using a com -

bination of Vari able Infiltration Capacity (VIC) and 
the Noa h Multi- Physics (Noah MP ) la nd surface mod-

els (LSMs ) for differen t return periods. We, therefore, 
analyzed the changes in extrem e precipitat ion char -

acteristics using a suite of precipitation products and 
performed a flood frequency analysis by transl ating 
the extreme precipitat ion into runoff using the 
hydrology model s. 

METHODS 

Data Construct ion and Cha racteristics 

High-resolution design intensi ties of extreme rain-

fall events are impera tive for assessing the impact of 
climate change over urban areas (Arnbjerg-Nielsen 
2012). This is due to the ability of these models to cap -

ture many hydrologic processes that occurred at finer 
scales and to avoid unde r- or overest imation of the 
design stor m for the subsequent analysis. Ther efore, 

our selection of precipitation data and climate model s 
was conducted with cau tion to comp rehend important 

hydrologic processes in the urban region. We first 
selected the urban region and then focused on collect -

ing and gene rating high-resolu tion data to compute a 
storm design. The ext reme precipitat ion term was 

characterized based on the precipitation amount at 
temporal and spatial scales. For both station observa -

tion and gridded products , a daily precipitation 
amount was considered extreme when it exceeded the 

90th percen tile threshold computed for all rainy days. 
The rainy days wer e defined as the days with precipi -

tation of at least 1 mm. The precipitation data were 
analyzed by applying four diff erent statistical tests 
(Linear Regressi on, Mann–Kend all [MK] Trend Analy -

sis, Theil–Sen Slope Estimator, and Kolm ogorov–Smir-

nov [KS] test) for 1950–2099. The linear regres sion 
statistics have a limitation in providi ng relia ble assess-

ments of trend s and dist ributions. Howev er, the three 
other approaches are not only considered robust and 
consistent, but in combination they can also provide a 

complete understan ding of the direction and dist ribu -

tion of extreme precipitation events. 

Study Area 

Figure 1 shows the study region that includes ur ban 
and surr ounding nonurban regions of southeastern 

JAWRA 

Virginia. The meteorological stations were selec ted 
based on the availability of daily precipitation records 

and to capture the prec ipitation pattern s in the region. 
Precipitation occurs both as rainfall and snow; ho w -

ever, the study area received more rainfall and less 
snow in comparison to other parts of the state . Addi -

tionally, tropical stor ms and hurricanes bring a sub-

stantial amount of rainfall to this area. The urban 
areas in southeastern Virginia experience an average 

of 1,200 mm precipitation each year. The record shows 
below average precipitation (<1,200 mm) at Norfolk 
and Hampton, whereas there is above average precipi -

tation (>1,200 mm) at Suffolk and Williams burg. The 
Norfolk and Hampton regions are low-lying coastal 
lands and are vulne rable to floods and sea level rise. 
The increased frequenc y of ext reme precipitation 
events and enhanced floods can be exacerbated due to 

the casc ading effe cts of climate change. 

Observed Precipitat ion of the National Cente r for 
Environmental Information 

Precipitation records for this study wer e obtained 
from the GHCN -D-based stations of the National 
Center for Environm ental Informat ion. The stations 
were selected based on the period o f recor d and 
these station s had an approximate long-term da ily 
historical time series for 1950–2010 (Table 1). The 
quality of the data was evaluated using quality 

assurance reviews and checks for spurious chan ges 
in th e mean, variance, and outliers from both serial 

and spatia l perspective s (Menne et al. 2012). These 
datasets were found to be suitab le for both funda -

mental and applied hydrological analysis at various 
spatial scales and wer e previ ously employed in a 
variety of assessment activities including the 
analysis of climat e ext remes in North America. The 

analyses illustr ated a variety of climate chan ge 
indices and tracked large-sca le changes in observed 
daily maximum and minimum temp erature across 
the globe. 

Simulated Precipitat ion of the GCMs 

The GCMs were selec ted based on the availab ility 
of CMIP5 MACA output (Abatzoglou 2013) at a daily 

time step to evaluate how daily extreme rainfall was 
captured during the historical period (1950–2005). 
This dataset was subsequently used to predict the 
changes in the future precipitation regimes (2016– 
2099) in several studies (Sridhar and Anderson 2017; 
Sridhar et al. 2018). We selected 15 GCMs to address 

and to get the overall understandin g of the extremes 
while consid ering the inter-model uncertainties 
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FIGURE 1. The study area in southeastern Virginia showing Global Historical Climatology Network-Daily (GHCN-D) stations. 

resulting from a range of parameters in simulating 
precipitation at 1/16th-degree spatial reso lution. The 

details of these GCMs are inclu ded in Table 2. 

Weather Resea rch and Foreca sting Model 

The North American Regional Reanalysis (NA RR) -

derived coarse gridded precipitation (resolutio n of 
32.6 km) data were used for dynamic down scaling at 
a 4-km spatial scale. This downscaling was performed 

using the Weather Research and For ecasting (WRF) 
model from 1982 to 2010 over southeastern Virginia 

at the hourly time scale. The first three years were 
considered a spin-up period to stabilize the model 

and therefore are not included in the analysis. For 
the simula tion with the WRF model, several inputs 
were used including the soil parameters , land cov er, 

and sea surface temperature from the National Cen-

ters for Enviro nmental Predict ion, the Moderate-

Resolution Imaging Spectroradiometer (MODIS), and 
the National Oceanic and Atmospheric Administra -

tion (NOAA). The ho urly precipitation for every 4 km 
of resolution from 1985 to 2010 was anal yzed to 
capture the extreme precipitation events and deter-

mine if there were missing input data for some years 
(if data were miss ing, they wer e exclu ded from the 
analysis). 

VIC Model 

For streamfl ow simulation, we used the VIC 4.2.a 
(Liang et al. 1994) version where sub-grid variability 
is explicitly defined. This model has been exten sively 

used in our climate change impact assessment 
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TABLE 1. A list of the in situ observation stations of the GHCN-D for precipitation trend analysis for 1950–2010. 

Station Name of the stations Elevation (m) Latitude Longitude 

Holland 
Suffolk 
Wallaceton 

West Point 
Williamsburg 
Hampton 
Norfolk Airport 

Norfolk 
Oceana 

Holland 1 E VA US 
Suffolk Lake Kilby VA US 

Wallaceton Lake Drummond 
VA US 

West Point 2 NW VA US 
Williamsburg 2 N VA US 
Langley Air Force Base VA US 

Norfolk International Airport 
VA US 

Norfolk NAS VA US 
Oceana NAS VA US 

24.1 
6.1 

9.1 

6.1 
21.0 

3.0 
11.9 

6.1 
7.0 

36.6833 
36.7333 

36.6000 

37.5167 
37.2667 

37.0833 
36.8833 

36.9375 
36.8333 

76.7833 
76.6000 
76.4333 

76.8167 
76.7000 
76.3500 
76.2000 

76.2893 
76.0333 

TABLE 2. A list of the Global Climate Models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5) that are downscaled 
using Multivariate Adaptive Constructed Analogs (MACA) techniques for precipitation trend analysis for 1950–2099. 

Model 
Model country Model agency Spatial resolution 

BCC-CSM1-1 China Beijing Climate Center, China Meteorological 1/16th of a degree 
Administration 

BCC_CSM1-1-m China Beijing Climate Center, China Meteorological 1/16th of a degree 
Administration 

BNU-ESM China College of Global Change and Earth System 1/16th of a degree 
Science, Beijing Normal University, China 

CanESM2 Canada Canadian Centre for Climate Modeling and Analysis 1/16th of a degree 
CCSM4 USA National Center of Atmospheric Research, USA 1/16th of a degree 
CNRM-CM5 France National Centre of Meteorological Research, France 1/16th of a degree 
CSIRO-Mk3-6-0 Australia Commonwealth Scientific and Industrial Research 1/16th of a degree 

Organization/Queensland Climate Change 
Centre of Excellence, Australia 

GFDL-ESM2M USA NOAA Geophysical Fluid Dynamics 1/16th of a degree 
Laboratory, USA 

GFDL-ESM2G USA NOAA Geophysical Fluid Dynamics 1/16th of a degree 
Laboratory, USA 

INM-CM4 Russia Institute for Numerical Mathematics, 1/16th of a degree 
Russia 

IPSL-CM5A-LR France Institut Pierre Simon Laplace, France 1/16th of a degree 
IPSL-CM5A-MR France Institut Pierre Simon Laplace, France 1/16th of a degree 
IPSL-CM5B-LR France Institut Pierre Simon Laplace, France 1/16th of a degree 
MIROC5 Japan Atmosphere and Ocean Research Institute 1/16th of a degree 

(The University of Tokyo), National 
Institute for Environmental Studies, and 
Japan Agency for Marine-Earth Science 
and Technology 

MIROC-ESM Japan Japan Agency for Marine-Earth Science 1/16th of a degree 
and Technology, Atmosphere and Ocean 
Research Institute (The University of 
Tokyo), and National Institute for Environmental Studies 

Note: NOAA, National Oceanic and Atmospheric Administration. 

studies in many river basins (Hoekema and Sridhar concept of the average weight ed area by considerin g 
2013; Sridhar e t al. 2013; Kang and Sridhar 2018). the ele vation and snow bands and it has three soil 

The VIC model simul ates the water and energ y fluxes layers for water and energy balance calculations. Sur -

by considerin g the soil and vegetation parameters, face runoff and infiltratio n is defined by the variable 
meteorological inputs, and veget ation library. Each infiltration curve (Wood et al. 1992) and thus enables 

vegetation class has different parame terizations, runoff calculations for sub-gri d-scale areas. We used 
including vegetation ty pe, leaf area index, and other the vegetation and soil parameters develope d at 
physiological characteristics. The model works on the 1/16th-degree spatial reso lution extracted by Livneh 
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et al. (2013), Maurer et al. (2002), and Tang et al. 
(2012). The fraction of the veget ation type for each 
grid cell was derived from the University of Mary -

land’s 1-km vegetation classification (Hansen et al. 
2000). We applied the VIC model at 1/16th-degree 
spatial resolution with the meteorological forcing 
regridded from daily temperature and precipitat ion 
observations for 1915–2011 (Livneh et al. 2013) . The 

meteorological dataset included the precipitation , 
minimum temperature , maximum temperatu re, and 
wind speed derived from approximately 20,000 NOAA 

stations. We calibrated the VIC model pa rameters 
that included the depth of the soil layers, maximum 

baseflow, maximum soil moisture, and variable infil -

tration parameter using Shuffled Complex Evolution 
algorithm. The output from VIC model was used to 
set up the Noah MP model including the estim ation 

of input stati c and dynamic parameters. 

Noah MP LSM 

The Noah LSM with the multi-parame terization 
scheme is an impr oved version of the baseline Noah 
LSM (Ek et al. 2003; Niu et al. 2011). Our earlier 
studies using the Noah model have proven to per-

form well for water and energy flux simulations from 
field scale (Sridhar and Wedin 2009; Valayamkun-

nath et al. 2018) to large scales (Sridhar 2013; Jaksa 
and Sridhar 2015). The interactive veget ation canopy 
layer was introduced to compute the canopy and 
ground surface temperatures. The choice of multi-

parameterization was provided for the vegetation 
model (leaf dynamics), stomatal resistance, radiation 

transfer scheme, and scheme for run off and groun d -

water. The schemes mainly include the TOPMODEL 
(Niu et al. 2007) and free drainage scheme (Schaake 
et al. 1996 for the Noah baseline model) and for this 
study, free drainage scheme is used. The semi-tile 
sub-grid schem e plays an important role in calculat-

ing the surface energ y balance for vegetation and 
bare gr ound separately and improves the radiation 
balance. The meteorological forci ngs include the pre -

cipitation and wind speed, which were similar to 
those used for VIC LSM. The meteorological forc ings 

at the 1/16th-degree spatial resolution with daily 
temporal resolution were used to simul ate the Noah 
MP LSM. The other meteorological forcings that 

included air temperature, shortwave and longwave 
radiation, relative humidity, and pressure were sim -

ulated from VIC’s output. Wind direction was 
derived from CCMP V2.0 U and V component wind 

data, which is a combination of cross-calibrated 
satellite microwave winds and instrument observa-

tions (Wentz et al. 2015). The model output was 
available at a 0.25-degree spatial resolution at 10 m 

height and was regridde d to 1/16th-degree spat ial 
resolution. The static input parameters, including 

the initial soil moisture conten t, skin temperature, 
and snow water equivalent, were derived from the 
VIC’s output. The veget ation type was extract ed 

from the IGBP MODIS classification (University of 
Maryland), whereas the soil type index was derived 
from th e hybrid State Soil Geogr aphic Database 
(STATSGO) Food and Agric ultural Organiza tion soil 

texture datasets. 

Streamflow Routin g 

Finally, streamflow routing was performed using 
the stand-alone routin g model (Lohmann et al. 
1996), which is based on a unit-hydrograph method 
that uses daily surface run off, baseflow, and precipi-

tation to e stimate the streamflow at the desired 
location. The flow direction and flow ac cumulation 
files required for the routing network were devel -

oped using a 30-m Digital Elevation Model from 
Shuttle Radar Topography miss ion. The runoff 
generated by the model can be used to assess its cor -

relation with the precipitation data and to observe 
the shift in future simulation s based on the 
historical observations. 

Statistical Methods 

While detecting an association or correlation 
between any variables refers to trend, the test s are 

performed generally to assess whet her the trend is 
increasing, decreasing, or periodic in nature. Ordi-

nary lea st squares (OLS) is one of the most popular 
linear regression-based trend detec tion techniques 

that has been frequent ly used for evaluatin g tempo -

ral trends in streamflow and precipitation (Kroll and 
Stedinger 1998). It should be noted that OLS is par -

ticularly sensitive to non-norm ality and outliers. This 
was be cause OLS regres sion minimizes the differ -

ences between observations and the best-fit straight 
line (Wilk s 2006). The Thei l–Sen slope estimator is 
the most popular nonparametric technique, which is 

an alternative to the parametric OLS regression. This 
method efficie ntly compu tes trends that are insensi -

tive to outliers and considered to be more accurate 
than simp le lin ear regres sion for skewed and 
heteroscedastic data and comp etes well against least 
squares even for normally dist ributed data in terms 

of statistical powe r. Whe n the data meet all of the 
parametric assumptions, the Theil–Sen has approxi-

mately 91% Pitman efficiency for linear regres sion, 
and when the data are very non-normal and skewed, 

the Theil–Sen efficiency can exceed 1.27 times that of 
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the linear regression (Helsel and Hirsch 2002; 
Sheskin 2007; Sprent and Smeet on 2007; Armitage 
et al. 2002). 

MK trend analysis i s a no nparametric ra nk-based 
trend test (Gilbert 1987) that is robust to non -normal -

ity and is less influenced by outliers than the OLS 
regression approach (Helsel and Hirsch 2002). The 
test identifies systematic increases or decreases in 

the ran k of the data points with time. The MK Z 
statistic provide s an indication of whether an existing 

trend is increasing or decreasing based on decided 
probability of significance. We applied a two sample 

KS test to quantify distance between the empir ical 
distribution functions of the two datasets. The nul l 
distribution of this statistic was calculated under the 

null hypothesis so that the samples are drawn from 
the same distribution. In each case, the dist ributions 

considered under the null hypothesi s were continuous 
distributions but were otherwise unrestricted. The 
correlation between the observational dataset and the 

simulated dataset was quantitatively assessed 
through the Nash – Sutcliffe model efficiency 
coefficient. 

T
R ðQ t  Q t Þt¼1 m oE ¼ 1  ð1Þ 

T  
Rt¼1

ðQ t
o  Q OÞ; 

is the modeled discharge, and Q t is observed dis-o 
charge at time t. 

RESULTS AND DISCUSSION 

Daily Precipitati on 

The precipitation characterist ics were analyzed for 
1950–2010 at nine locations in southeas tern Virginia 
(Figure 2). These stati ons showed positive sk ewness 
with approxim ately 60% of the precipitation events at 
or below the mean daily precipitation . Even though 

the magnitudes of mean precipitation were below 
50 mm, large precipitation events were as high as 
300 mm or more in most locations. Whi le the Hamp -

ton region exp erienced less intense rain fall (<200 mm 
per day), Norfolk experienced as much as 300 mm of 

daily precipitat ion during the period of anal ysis. The 
largest precipitat ion event was recorded at Willia ms -

burg (>350 mm per day), which is located slightly 
interior from the coastline and northwest of Hamp ton 

and Norfolk. 

Extreme Preci pitation Trends 

Figure 3 illustr ates the annual extreme precipita -

tion trends using daily observati on data for 
1950–2010. Increasing trend s were persistent across 
southeastern Virginia althoug h few locations showed 
opposite (decreasing) trends. These decr easing trends 

appeared mostly along the coast line. Around urban 
locations, ext reme precipitat ion trend estimates in 
terms of the TS slope demons trated changes in the 
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FIGURE 2. Precipitation distribution at GHCN-D observation stations for 1950–2010 at nine locations of the study area. 
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FIGURE 3. Analysis of the daily maximum precipitation trends for 1950–2010 at nine GHCN-D locations of the study area. The blue line 
represents the average of the five high precipitation events. The red bar indicates the trend direction. 

positive direction that ranged between +0.1 and +0.5 
per year , where OLS ove restimated the trends 
between +0.2 and +0.8 (Table 3). The differences were 

due to the variation in the methods adopted to derive 
the precipitation dist ribution. There were disagre e -

ments in the trends and direc tions between these two 
methods in whic h the OLS estimates showed an 

increase in extreme prec ipitation at a rate of +0.196, 
whereas the TS estimator slope estimated little or no 

decrease (0.023) in Suffolk. This might be due to 
the pres ence of outliers and the unequal variation of 
precipitation events that influenced the OLS-based 

estimate to be positiv e. The same facto r migh t influ -

ence the quantification trend of extreme precipitat ion 
at Williamsburg, where OLS showed the highest 

increase and an annual rate of +0.8, whereas the 
Theil–Sen slope increased by +0.28 annual ly from 
1950 to 2010. The TS estima ted the prec ipitation 

trend with the highest increase (+0.5) and was 
located at Suffolk, which was in line with th e MK 
analysis due to a significant increase in the extreme 
precipitation (Z = 1.79). The positive or negative MK 
trend analysis of the annual extreme daily precipita -

tion agreed with the increas e or decr ease in the TS 
trends, respectively. At a = 0.05 (95% confidence 

level), the computed probability was >0.95 at Suffolk, 

Wallaceton, Williamsburg , and Norfolk (Table 3) 
which indicates that the trend is said to be decreas -

ing if Z (MK test statistic ) is negative and the com -

puted probability is greater than the level of 
significance (a = 0.05), wherea s the trend is said to be 

increasing if Z is positive and the computed probabil -

ity is greater than the level of significance. In addi -

tion to the trends, it was evident that the tails of the 
distribution of the above-median precipitation showed 
a wide range. Even though the average of the highest 

five prec ipitation events in each location was below 
100 mm, the daily prec ipitation was recorded at 
>200 mm at Norfolk, Williamsburg, Suffolk, and 

Hampton. Some of these locations measured as high 
as 350 mm daily precipitation on severa l occasions 
during the period of analysis. 

Extreme Precipitati on Intensit y and Frequency 

When the annual high precipitation events, based 
on higher than the 90th percentile distribution, were 

compared with low prec ipitation events of less or 
equal to 90th perc entile distribution, all of the 

locations showed a precipitat ion ratio range between 
5 and 10 times (Figur e 4). However, these ratios 
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TABLE 3. An estimation of the slope of the precipitation trends using linear regression, the Theil–Sen estimator, and Mann–Kendall analy-

sis for 1950–2010. 

Mann Kendell analysis – 
Linear regression Theil Sen estimator – 

Station Slope Slope Test Z p-Value Trend (a = 0.05) 

Holland 0.196 0.023  0.06  0.476078  
Suffolk 0.799 0.491 1.79 0.963273 + 
Wallaceton 0.448 0.252 1.31 0.904902  
West Point 0.198 0.100 0.79 0.785236  
Williamsburg 0.821 0.279 1.44 0.925066  
Hampton 0.021  0.125  0.46  0.322758  
Norfolk Airport 0.340 0.152 0.46 0.677242  
Norfolk 0.509 0.239 1.31 0.904902  
Oceana 0.203  0.175  1.23  0.109349  

Note: The significant trends at few locations are indicated in italics. 

FIGURE 4. Estimation of the precipitation ratio (high [>90th percentile] to non-high) for 1950–2010 at nine GHCN-D 
locations of the study area. The bar represents the number of precipitation events greater than the 90th percentile. 

showed a distinct increase during the last 10–15 years ratio during the period of analysis. In the last few 
around the urban areas of Hampton, Norfolk, and years after 2001, where most of the locations show ed 

Williamsburg. Regardless of the high ratio in recent a high frequency of extreme precipitation, the Hamp -

years, these hi gh precipitation events were consis- ton region experienced less intense rainfall (ra -

tently more than 10 times eve ry year from 1950 to tio < 10). The regions, including Suff olk and 
2010 (indic ated by blue line in Figur e 4). Alt hough Williamsburg, were susceptible to the most frequent 
few locations along the coastline showed a decreasing extreme precipitat ion, which was over 300 mm (at its 

amount of high prec ipitation eve nts, the majority of highest) compared to the other regions in southea st-

the locations agreed with the increased prec ipitation ern Virginia. 
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Comparison of Annual and Se asonal Extreme 
Precipitation 

The in situ daily observation of the annual ext reme 
precipitation for nine locations was compared with 

downscaled precipitation for 1950 –2005 to illustrate 
the ability of the downscaled GCMs in capturing the 

extreme precipitation events (Figur e 5). The hourly 
precipitation extremes from WRF simulations were 

also compared to evaluate the ability of the WRF 
model in simulating high-res olution precipitation for 

the same locations. The comparisons showed that the 
ensemble of extreme precipitation eve nts of the 

GCMs captured almost all of the eve nts with a wide 
range of uncertainty. At most locations , GCMs were 

overpredicting annual prec ipitation extremes, and a 
very few events remained uncaptured. The seasonal -

ity i n the extreme precipitation was well captured by 
the ensemble of the downscaled GCMs; however , the 
WRF-NARR-based seas onal distribution of extrem e 

precipitation eve nts was not able to stati stically 
correlate (Tables 4 and 5). The distribution statistics 
of the simulated mean extreme precipitation of 15 
GCMs were wit hin the critical distribution esti -

mates (based on KS lookup table) in most locations. 

Simulated extrem e precipitation was able to generate 
a similar seasona l extreme precipitatio n distribution 
compared to that of the observations for all of the 
locations except Holland , West Point, and Wil liams-

burg. At these locations, the underprediction of sea -

sonal extrem e precipitat ion by the GCMs caused a 
difference in prec ipitation distribution when com-

pared with seasonal observations. Assuming a 5% sig -

nificance level, the distribution of the mea n extreme 
daily precipitation of 15 GC Ms relativ e to extrem e 
annual observations, the distribution estimated sig-

nificant difference in most locations showi ng higher 
KS distribution statistics than the critical distribu-

tion (Table 4). This was due to the presence of several 
annual extreme even ts that were not captured by the 

mean of the simul ated annual extreme precipitation. 
The mean of the simulated annual extreme daily pre -

cipitation distribution statistically matche d wit h the 
extreme of the observed data at Hampton and Suf-

folk. 
The overprediction by the GCMs caused minimal 

deviations from the annual extreme daily observa-

tion. The KS distribution statistics also revealed that 
incorporated hourly simul ated precipitation from 
WRF-NARR extreme daily precipitation were also 
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FIGURE 5. Comparison of the maximum precipitation trends for 1950–2005 at nine GHCN-D locations of the study area among the daily 
CMIP5 MACA simulation, hourly Weather Research and Forecasting (WRF) model, and daily GHCN-D observation. The shaded region 

represents the uncertainty generated by the 15 CMIP5 MACA simulation models. NARR, North American Regional Reanalysis. 
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TABLE 4. An estimation of the precipitation distribution between GCMs and GHCN-D in situ observation using Kolmogorov–Smirnov (KS) 
test analysis for 1950–2005. 

Seasonal extreme daily precipitation Annual extreme daily precipitation 

D-statistical D-critical D-statistical D-critical 

Holland 0.049 0.029 0.049 0.029 
Suffolk 0.070 0.028 0.070 0.028 
Wallaceton 0.057 0.030 0.057 0.030 
West Point 0.044 0.031 0.044 0.031 
Williamsburg 0.065 0.028 0.065 0.028 
Hampton 0.024 0.029 0.024 0.029 
Norfolk Airport 0.030 0.028 0.030 0.028 
Norfolk 0.072 0.024 0.072 0.024 
Oceana 0.049 0.029 0.049 0.029 

Note: Bold indicates at 5% significance level, D-statistical < D-critical. 

TABLE 5. An estimation of the precipitation distribution between NARR-WRF and GHCN-D in situ observation using KS test analysis for 
1985–2010. 

Seasonal extreme daily precipitation Annual extreme daily precipitation 

D-statistical 

Holland 0.113 
Suffolk 0.102 
Wallaceton 0.195 
West Point 0.068 
Williamsburg 0.105 
Hampton 0.121 
Norfolk Airport 0.081 
Norfolk 0.065 
Oceana 0.061 

unable to match observed daily extreme precipitation 
distribution as several extreme observations were 

underpredicted between 1985 and 2010 (Table 5). 
The mean of the dow nscaled annual extreme daily 
precipitation showed an aver age deviation of 15% 
with the observed extremes, which result ed from the 
underprediction of the extreme precipitat ion at all of 
the locations . The deviations were larger (>20%) for 

Holland, Wallaceton, and We st Point. The mean devi -

ation at the Hampton region was only 1%, whereas it 
was approximately 3% at Suffolk. When the devia -

tions of the annual extrem e daily precipitation by 
GCMs were computed at nine locations, the least bias 

was evident from two models, GFDL -ESM2M 
(10.61%) and BCC-CSM1-1-m (11.56% ) (Table 6). 

Trends and Distribution of Future Daily Maximu m 
Precipitation 

From the analysis of two downscaled GCMs (BCC -

CSM1-1-m and GFDL -ESM2M), both the frequency 
and magnitude of the extreme precipitation in the 
RCP 4.5 and RCP 8.5 scenarios were found to 
increase in comparison with historical observations 

D-critical D-statistical D-critical 

0.044 0.082 0.034 
0.043 0.068 0.034 
0.043 0.069 0.033 

0.045 0.073 0.035 
0.043 0.050 0.033 
0.047 0.110 0.041 
0.043 0.085 0.034 
0.015 0.120 0.033 
0.043 0.090 0.034 

(Figure 6). In both RCP scenarios, annua l extreme 
daily precipitat ion was much higher in comparison to 
the corresponding mean and median. RCP 8.5 sce -

nario showed high frequency and magnitude at all 
nine locations; however, there were several extrem e 
precipitation events that wer e predicted higher in 
RCP 4.5 scenar io. At Suffolk, West Point, and Wil-

liamsburg, where high daily precipitation (~300 mm) 
was recorded for the historical period, the extreme 
precipitation was predicted over 400 mm on several 
occasions during the period 2016–2099. Thes e esti-

mates of magnitude were almost twi ce the historical 
records with regard to the annual ext reme daily pre -

cipitation events. 
The frequency of these precipitation events showed 

increases in the future. In both RCP scenarios, these 
three locations (Suf folk, West Point, and Williams -

burg) predicted nearly 100 events where the precipi-

tation was expected to be higher than 400 mm. Even 
with a decreased precipitat ion trend in the RCP 4.5 

scenario in these three locations, precipitation magni -

tudes higher than 400 mm were estimated to occur 
more than 32 times in the future. 

These increases in frequenc y and magnitude were 
also expected to change the precipitat ion distribution 
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TABLE 6. An estimation of the daily precipitation statistics indi-

cating percent bias between downscaled precipitation of CMIP5 
models and GHCN-D in situ observation for 1950–2005. 

Model Mean % bias 

BCC-CSM1-1 16.23 
BCC-CSM1-1-m 11.56 
BNU-ESM 13.80 
CanESM2 15.54 
CCSM4 23.32 
CNRM-CM5 16.84 
CSIRO-Mk3-6-0 19.12 
GFDL-ESM2M 10.61 
GFDL-ESM2G 18.41 
INM-CM4 21.29 
IPSL-CM5A-LR 15.99 
IPSL-CM5A-MR 14.26 
IPSL-CM5B-LR 15.37 
MIROC5 20.63 
MIROC-ESM 14.97 
WRF-NARR 19.73 

Note: Bold indicates at 5% significance level, D-statistical < D-critical. 

in the future where stati stically sign ificant differen ces 
were noted with th e historical observations (Table 7). 
The KS test analysis estimated a different distribution 
(D-statistical > D- critical) in the annual extreme 

precipitation at all locations in comparison to the his -

torical period, although the seasonal extreme 
distribution might be similar at very few locations 
(D-statistical < D-critical). The KS analysis for 
extreme precipitation predicted a similar statistical 
distribution at Norfolk; however, statistical differences 
were expected at Hampton. The frequency and magni -

tude of the future extreme precipitation events at 
Hampton and Norfolk were also expected to increase 
despite decreasing (RCP 4.5) or increasing (RCP 8.5) 
prediction trends by the scenarios. When both RCP 
scenarios were considered, it was predicted that the 

Hampton region was expected to experience 6–19 pre -

cipitation events that would be higher than 400 mm, 
whereas the Norfolk region was predicted to have 3–10 
similar precipitation events from 2016 to 2099. 

Spatial Analysi s of Precipitati on 

Figure 7 shows the extreme precipitation distribu-

tion extracted from the downscaled GCMs for 1950– 
2099 ove r southeas tern Virgini a at nine locations. 
Both the spat ial and temp oral distribu tion of precipi -

tation for the historical period agreed well over most 
locations. Despite the underes timation (William sburg, 
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FIGURE 6. Future extreme precipitation analysis using the Theil–Sen estimation for 2016–2099 using Representative 
Concentration Pathways (RCP) 4.5 and RCP 8.5 scenarios for the nine locations. 
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TABLE 7. Comparison of extreme precipitation distribution using CMIP5 MACA RCP 4.5 and 8.5 scenarios with GHCN-D 
observation using KS test analysis for 2016–2099. 

Annual extreme daily precipitation Seasonal extreme daily precipitation 

Station ID D45-statistical D45-critical D85-statistical D85-critical D45-statistical D45-critical D85-statistical D85-critical 

Holland 0.226 0.021 0.231 0.020 0.217 0.168 0.188 0.168 
Suffolk 0.231 0.020 0.214 0.019 0.248 0.169 0.199 0.169 
Wallaceton 0.230 0.021 0.225 0.021 0.190 0.142 0.146 0.142 
West Point 0.272 0.022 0.248 0.021 0.234 0.177 0.234 0.177 
Williamsburg 0.210 0.019 0.192 0.019 0.256 0.171 0.269 0.171 
Hampton 0.336 0.220 0.312 0.021 0.185 0.170 0.188 0.169 
Norfolk Airport 0.227 0.020 0.230 0.020 0.140 0.176 0.176 0.175 
Norfolk 0.243 0.020 0.245 0.020 0.152 0.180 0.171 0.180 
Oceana 0.255 0.021 0.255 0.021 0.186 0.180 0.200 0.179 

Note: Bold indicates at 5% significance level, D-statistical < D-critical. 

FIGURE 7. Spatial distribution of the annual extreme daily precipitation using two GCMs at southeastern Virginia. The red color 
around few stations indicates higher extreme daily precipitation at respective GHCN-D stations. 
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FIGURE 8. Intensity-duration-frequency analysis for annual extreme daily precipitation using observed, GCMs-based historical, 
RCP 4.5 and RCP 8.5 scenarios at nine GHCN-D locations of the study area. The precipitation from observed and GCMs was analyzed 

from 1950 to 2005, whereas the RCP 4.5 and 8.5 scenarios were analyzed from 2016 to 2099. 

Suffolk) or overestimatio n (Hampton), the zones for 
annual extrem e daily precipitation eve nts across the 
study region were well identified. Future extreme 
precipitation events over these area s also showed 
similar patterns. Simu lated precipitation from two 
GCMs (BCC-CSM 1-1-m and GFDL-ESM2 M) pre-

dicted increased frequency and magnitude from 2016 
to 2099. As expected, the RCP 8.5 scenario projected 
high precipitation extremes compared to that of the 

RCP 4.5 scenar io. The BCC-C SM1-1-m model pre -

dicted annual extreme daily precipitation in the 
southern region, which rang ed between 450 and 

700 mm. The Williamsburg regio n even predicted 2–3 
times higher magnitudes (>700 mm) than the histori -

cal period . Howev er, the GFDL-ESM2 M model pre-

dicted less intense precipitation at the RCP 4.5 
scenario ranging between 300 and 450 mm (1–2 times 
of the historical precipitation events) in most loca -

tions. However, the GFDL-ES M2M model in the RCP 
8.5 scenario predicted 450–700 mm of prec ipitation 
across the study region. For instance, at the Hamp -

tons, the RCP 4.5 scenario projected an increas e of 
1.5–2 times, wher eas the RCP 8.5 scenar io expected 

an increas e of 2.0–3.0 times of the annual extrem e 
daily precipitat ion. 

Depth-Duration-R eturn Period Ass essment 

The annual extreme daily precipitation observations 
and estimates were used to highlight flood frequencies 
for 24- and 48-h durations at nine locations (Figure 8). 
The comparison for 1950–2005 showed that longer 
duration generally predicted a high precipitation and 
return period except at two locations along the coast -

line. Both the Norfolk and Virginia Beach regions 
illustrated high precipitation intensity for high return 
periods over a duration of 24 h of rainfall. When the 
GCMs were used to reproduce flood frequencies for 
the historical period (1950–2005), b oth 24 - a nd 48 -h 

extreme rainfall deviated in most locations. However, 
these deviations were higher for 24 h than that of the 
48-h durations. Despite these deviations, the extreme 

precipitation at the Hampton, Norfolk, Virginia Beach, 
and West Point regions were well captured. 

When the same GCMs were used to predict climate 
change impacts on precipitation extremes for 2016– 
2099, the RCP 8.5 scenario projected higher precipita-

tion relative to the RCP 4.5 scenario in most locations. 
The distinct differences in the prediction were observed 
at West Point and Williamsburg, which are the regions 
with high precipitation. These regions were also found 
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FIGURE 9. (a) Location map of the James River Basin. (b) Calibration (1991–2000) and Validation (2001–2009) of simulated (red) 
streamflow from Noah Multi-Physics (Noah MP) compared with Observed (green) United States Geological Survey (USGS) streamflow data 

at the USGS_2042500 gauge station. (c) Calibration (1991–2000) and Validation (2001–2009) of simulated (red) streamflow from Noah MP 
compared with Observed (green) USGS streamflow data at the USGS_2042500 gauge station. 

to be vulnerable to frequent floods in the future. The 
increased intensity and frequency in precipitation at 
Hampton and Norfolk were expected to cause moderate 
flooding in the future. For most regions, the increase in 
the precipitation intensity for RCP 4.5 was estimated 
to be two t imes, whereas for R CP 8.5, it was estimated 
to increase by three times compared t o historical p er-

iod. Exceptionally, Norfolk shows relatively less 
increase in precipitation intensity, which was estimated 
to be 1.5 times for RCP 4.5 and two times for RCP 8.5. 

In case of Hampton, the increase in duration of intense 
precipitation events (48 h) was indicative, whereas the 
predicted p recipitation intensity was only 1.06 and 1.08 
times for the RCP 4.5 and RCP 8.5 s cenarios relative to 
the historical period. An intercomparison between Nor-

folk and Hampton reveals t hat precipitation intensity 
for the Norfolk region is expected to increase around 
1.1 times and 1.6 times i n the RCP 4.5 and RCP 8.5 

scenarios when compared to the Hampton region for 
the historical period of analysis. 
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FIGURE 10. Annual average streamflow (ft 3 /s) (line plot) along with the annual precipitation (cm) (bar plot) for (a,b) Hampton, (c,d) 
Suffolk, (e,f) Williamsburg, (g,h) Virginia Beach, and (i,j) at the USGS_02042500 streamflow gauge station. The red lines and bars 

indicate the BCC-CSM1.1 model, whereas blue lines and bars indicate CanESM2 model. The green lines and bars indicate the observed data 
regridded from NOAA stations. 

Streamflow Calibr ation and Val idation 

To assess how extreme precipitat ion might impac t 
streamflow, we simulated flows in a hyd rological 

modeling framework with VIC and Noah MP models. 
We used the U.S. Geological Survey (USGS) stream-

flow data to calibrate and validate the VIC and Noah 
MP LSM. Figure 9 (a) shows the gauging stations in 

the James River Basin in the downstr eam sect ion of 
the James River. There were no stations near the 
coastal region, and he nce this area was chosen to 
obtain a better idea about the watershed response to 

varying precipitat ion regimes. We calibrated and 
validated the streamflow data obtained from the 

combination of VI C and Noah MP results wit h the 
USGS monthly stati stics and ext ended this in forma-

tion to simulate flows from Hampton , Suffolk, Wil-

liamsburg, and Vir ginia Beach wher e there were no 
observed flow data. Three parameters were calibrated 
to improve the performance of the model based on 
Cai et al. (2014) that included saturat ed soil condu c -

tivity (SATDK), maximum soil moisture content 
(MAXSMC), and fun ction of soil type (BB). During 
the ca libration period (1991– 2000) , th e NSE calcu-

lated for monthly streamflow was 0.81 at the USGS 
gauge station (Figu re 9a). Similar performance can 
be noted for the validation period with an NSE of 
0.84 (Figure 9b). 
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FIGURE 11. A flood frequency curve for annual average flows for (a) Hampton, (b) Suffolk, (c) Williamsburg, (d) Virginia Beach, and (e) the 
USGS_02042500 gauge station. The black and white lines refer to the mean streamflow of two models (BCC-CSMv1.1 and CanESM2) 
corresponding to the future period (2006–2097). The red circles indicate the simulated streamflow for the baseline period (1950–2016). 

Printed by [W
iley O

nline Library - 108.028.070.019 - /doi/epdf/10.1111/1752-1688.12752] at [23/03/2021]. 

Projected Stre amflow 

With the calibration parameters, we simul ated 
future str eamflow based on the MACA datasets for 
two GCMs (BCC-CSM1.1 and CanESM2) for the his-

torical as well as the future period with GCMs and at 
a spatial resolution of 1/16th degree. Figure 10 indi -

cates the annual streamfl ow rate (ft
3

/s) and total pre -

cipitation (cm) for different locations from 2006 to 
2097. There is not much variation in highflo ws ove r 

time but a shift in peaks was evident for the two 
RCPs. In the case of RCP 4.5, increased discharge 
rates were found between 2028 and 2040 for the 
BCC-CSM1.1 model, whereas in the case of 
CanESM2, it was found to be increasing between 

2016 and 2028 at all selected loca tions including the 
USGS gauge stati ons (Figure 3). In the case of RCP 

8.5, increas ed discharg e rates were found to occur 
around the mid-century for CanESM2 and after mid-

century for BCC-CSM1.1. 

Flood Frequen cy Assessment 

Figure 11 highli ghts the changes in flood fre -

quency over the future period (20 06–2099) compared 
to the baseline period (1950–2016). The figure 
includes the flood frequency curves for all selected 
locations, including the USGS gauge station, and the 

GCMs show an overall increas e in the mag nitude of 
highflows. The RCP 4.5 scenario predicted a decrease 

in the mean flood mag nitude comp ared to the base -

line period (red points), whereas RCP 8.5 showed a 
consistent increase in mean flood magnitude at all of 

the selected locations. The flood frequency curves at 
the USGS gauge station indicate an increase of up to 

50% in flood magnitude. Similarly, Williamsburg and 
Hampton showed an increase in flood magnitudes. 
While the uncertainties between the GCMs resulted 

in differences in precipitation, and hence in stream-

flow simul ated by the hydrology models, the 
calibration e xercise accou nts for these uncertai nties 
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provided there are opportunities to estimate relative 
changes between historic and future periods. Fig-

ure 11 also highlights the climate chang ing effects on 
flood frequency curve with a specific focus on the 
James River Basin. However, future research for 

neighboring catchm ents is necessary to clearly 
understand the impacts of climat e change in south -

eastern Virgini a. 

CONCLUSION 

The analysis of the spat iotemporal characterist ics 
of precipitation is important to understand its influ -

ences for the urban environment. It is important to 
understand the extreme precipitation characteristics 
in urban areas for applications such as flood mon itor -

ing and design ing of draina ge infrastructure. 
Extreme precipitation can be devastating in the built 
environment as the fraction of impervious areas 
increase and thus aggrav ate the flooding potentia l. 
The uncertainties are associated with th e chang ing 
climate and are due to the limitations of recor ds and 
climate model s to captur e extreme precipitation. This 

study focused on quantitative analysis to understand 
the patter n of hi storical prec ipitation extremes and to 
evaluate projected prec ipitation in a changing climate 
in southeastern Virgini a, which is the base for 
national security establishments. The temporal and 
spatial ch aracteristics of observed extreme precipita-

tion and GCM projections were investigated to char-

acterize the changes in prec ipitation and the 
corresponding streamflow magnitudes for 1950–2099. 
These extrem e precipitation magnitudes were above 
300 mm in many events, wher eas the mean and med-

ian of the precipitation events was below 50 mm. 
The analysis of the daily observation of precipita -

tion using parametric (OLS ) and nonparametric 
(Theil–Sen slope estimator, MK test, KS test) statisti -

cal techniques at a confidence level of p ≤ 0.05 identi -

fied the ove rall increases in extreme precipitat ion in 
the study area. The main areas of extreme precipita -

tion were concentrated in a few ur ban regions, 
including Williamsburg, Suffolk, and Norf olk, due to 

extreme precipitation project ions in the summer 
months. 

Comparisons between MACA-based downscaled 
daily precipitat ion from 15 GCMs and WRF-NARR-

based downscaled hourly prec ipitation simulation 
were made to understand the extreme spatial and 
temporal chara cteristics. The magnitude and fre-

quency of the annual extreme precipitation were not 
consistent across multiple locations . There were a few 

observation sites where the annual extreme precipita -

tion was almost twice as much when compared with 
other sites. The mean or median of 15 annual 
extreme precipitat ion simulations was generally con -

sistent; however, a few extreme events of major con-

cern were underestimat ed at each site. These 
differences were attenuate d when seasonal extreme 
precipitation was eval uated where the unc ertainty 

was less. It should be noted that increas ed temporal 
resolution in the WRF -based NAR R prec ipitation 
extremes were not able to simulate the extrem e pre-

cipitation events. However, a num ber of GCMs, when 
engaged to capture these extremes, showed that the 

estimations were reasonable with some degree of 
uncertainty. 

The frequencies of these extreme prec ipitation 
events might also increase in the future (2016–2099). 

The stati stical metrics rev ealed that future precipita -

tion magnitudes could be 2–3 times greater relative 
to the historical period of anal ysis. Thes e extrem e 
precipitation events are crucial for the proper design 

of urban drainage and stormwater infrastructure sys -

tems. Simulated streamflow for the l ower James 
River Basin sugg ested that both RCP scenar ios pro -

jected higher peaks in the dow nstream sections. The 
flood frequenc y al so indicat ed an increase of up to 
50% in flood magnitude over the basin including Wil-

liamsburg and Hampton. The extrem e precipitation 
analysis from dow nscaled GCMs combined with a 
hydrological modeling assessment can serve as a 

guiding tool in estima ting nonstationary future flood 
frequencies and this can be useful for designing 
urban stormwa ter infrastructu re. 
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