Presenters

Chuck Bajnai
Chesterfield County
Chief Residential Plan Reviewer
Licensed Architect
bajnaic@chesterfield.gov

Brian Foley
Fairfax County
Building Official
Professional Engineer
brian.foley@fairfaxcounty.gov

Handouts

- Slideshow (3)
- Exercises
- “Classic” Wall Bracing Spreadsheet
- Practical Wall Bracing Spreadsheet

Handouts

- Slideshow (3)
- Example and exercises
Handouts

- Slideshow (3)
- Exercises
- “Classic” Wall Bracing Spreadsheet
- Practical Wall Bracing Spreadsheet
- Code Excerpt

PART 1
INTRODUCTION TO WALL BRACING

BRACING AND THE BUILDING CODE
The Evolution of Wall Bracing Requirements

1927 – UBC
“Buildings...shall be of sufficient strength to support the estimated or actual imposed dead and live...”

1986 - CABO
- Wall bracing methods
 - Let in bracing
 - 48” structural sheathing
 - Plywood
 - Particleboard
 - Fiberboard
 - Gypsum board

2000 – IRC
- Wall bracing
- 8 bracing methods
- Exception for “continuous sheathing”
- Wind bracing amounts based on seismic loads
2007-2010 - ICC Ad Hoc Committee

- Resolve discrepancies:
 - Make easier to understand
 - Provide flexibility
 - Separate wind and seismic
- Members representing:
 - Academics
 - Code officials
 - Industry representatives
 - Home builders
- Proposed changes first appeared in the 2009 IRC

2012 – IRC

- 16 bracing methods
- 4 narrow panels
- Wind and seismic separated
- Increased flexibility (with increased complexity)
- Simplified approach added

Why Change?
The Evolution of House Size

1950s 1960s 1970s 1980s 1990s 2000s

Why Change?
Design Trends

- Open Concept
- High Ceilings
- Two story Walls
- Natural Light Windows

Why Change?
New Methods and Technology

- Narrow Walls
- Energy Savings
- Hardware
- Materials
Seismic Load

- Based on:
 - Ground movement severity
 - Occupancy category

Seismic Design Category

- Based on:
 - Ground movement severity
 - Occupancy category

Seismic Forces

- Wind speed based on:
 - 3 second gust
 - 50 year storm
 - 30 feet above grade
 - Regional wind speed: 90 100 mph
 - Equivalent to mid grade Category 1 hurricane

Wind Load

- Hurricane Isabel 2003
- Derecho 2012

Wind Speed

- Regional wind speed: 90 100 mph
 - Equivalent to mid grade Category 1 hurricane
Spreadsheet – Wind Speed

<table>
<thead>
<tr>
<th>WIND SPEED (MPH)</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWL DESIGNATION</td>
<td></td>
</tr>
<tr>
<td>NUMBER OF FLOORS ABOVE BWL</td>
<td></td>
</tr>
<tr>
<td>BWP METHOD</td>
<td></td>
</tr>
<tr>
<td>AVERAGE BWL SPACING (ft)</td>
<td></td>
</tr>
<tr>
<td>TABULAR REQUIREMENT (ft)</td>
<td></td>
</tr>
</tbody>
</table>

Wind Load

Load Path

Definition: The route a force travels from the area where it is applied to the ground.

Vertical Load Path
Vertical load path transfers gravity load:
- to roof sheathing
- to rafters/trusses
- to walls
- to foundation
- to ground

Horizontal Load Path
Horizontal load path transfers wind load:
- to receiving wall
- to diaphragms
- to side walls
- to foundation
- to ground

Diaphragm: the sheathing of the roof or floor which acts as a thin, deep beam delivering lateral forces to the main wind force resisting system (MWFRS).
Multi-story House

- Wind load accumulates from top to bottom
- 1st floor walls resist greatest load
- Largest openings in 1st floor

Critical Element of Load Path
Receiving wall, suction wall

- Purpose:
 - Captures load
 - Delivers load to diaphragm
- Area of focus:
 - Sheathing/siding
 - Sheathing to stud fasteners

Critical Element of Load Path
Connections

- Purpose:
 - Transfers load
- Area of focus:
 - Fasteners
 - Anchor bolts

Critical Element of Load Path
Diaphragms

- Purpose:
 - Delivers load to side walls
- Area of focus:
 - Sheathing to rafter/truss fasteners
 - Sheathing to joists fasteners

Critical Element of Load Path
Wall Bracing

- Purpose:
 - Resists load
 - Transfers load to foundation
- Failure modes:
 - Sliding
 - Overturning
 - Racking
How Bracing Works

- Load at top plate
- No bracing, no stiffness

- Load at top plate
- Bracing stiffness
- Let in
- Solid panels
- Edge nails resist load, narrow spacing
- Field nails resist buckling, wide spacing

The Prescriptive Code

- IRC is a “cookbook”
- Recipes based on
 - Historical performance
 - Common materials
 - Nationwide application
- Follow recipe no RDP
- Fall outside recipe RDP required

The worst house you can build by law!

IRC Project Types

- New detached single family dwellings
- Townhouses
- Additions
- Alterations:
 - Decks to sunrooms
 - Carports to garages
 - Porches to living spaces
IRC Wall Bracing Limitations

- Wood framed construction
- Maximum 3 stories
- Wind speeds < 110 mph
- SDC A D2
- Wall height ≤ 12 feet
- Roof height (from eave to ridge) ≤ 20 feet

Alternate Prescription Solutions

- Wood Frame Construction Manual 2012
- WFCM Guide for high wind areas
- ICC 400 (for log structures)
- IBC Chapter 23

Engineered Design

- Shear walls
- When design exceeds limits of IRC
- “Accepted engineering practice”
- May be portion or entire structure
- Reference IBC

Shear Wall Standards

- SDPWS as design standard
- Design requirements for shear walls, diaphrags
- Table 4.3.4:

<table>
<thead>
<tr>
<th>Shear Wall Sheathing Type (blocked, unless noted otherwise)</th>
<th>Maximum Aspect Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood structural panels, unblocked</td>
<td>2:1</td>
</tr>
<tr>
<td>Wood structural panels</td>
<td>3.5:1</td>
</tr>
<tr>
<td>Particleboard</td>
<td>2:1</td>
</tr>
<tr>
<td>Diagonal sheathing, conventional</td>
<td>2:1</td>
</tr>
<tr>
<td>Gypsum wallboard</td>
<td>2:1</td>
</tr>
<tr>
<td>Portland cement plaster</td>
<td>2:1</td>
</tr>
<tr>
<td>Structural fiberboard</td>
<td>3.5:1</td>
</tr>
</tbody>
</table>

Shear Wall Standards

- ASCE 7 to determine wind load on MWRS

MWFRS: (main wind force resisting system) the structural elements in the horizontal load path which resist load.
Engineered Shear Walls
- Stud size, spacing
- Sheathing type, thickness
- Fastening schedule
- Hold down requirement, capacity
- Anchor bolt location, capacity

Engineered Shear Walls
TIP: When submitting or reviewing engineered calculations, look for...
- Wind load determination (13 18 psf in 90 mph, \(V_{ref} \) 115 mph)
- Seal of registered design professional
- Minimum aspect ratio

Engineered Moment Frame
- Engineered solution
- Requires calculations
- Types:
 - Custom
 - Pre designed
 - Hardy Frame
 - Simpson Strong Tie
- Used often in townhouses

Bracing Information
- Bracing elements shown on plans
 - BWPs
 - BWLs
 - Circumscribed rectangles
- Analysis may be required
 - Forms
 - Calculations
 - Spreadsheet

Relaxed Plan Review
- At discretion of the building official
- No review of 2nd floor wall bracing if:
 - 1st floor analysis correct, and
 - 2nd floor openings less than walls directly below
PART 2
R602.10 – “CLASSIC” WALL BRACING

“Classic” Wall Bracing

- Braced Wall Lines (BWL)
- Braced Wall Panels (BWP)
- Greater flexibility
- More complex

“Classic” Spreadsheet

Braced Wall Panel

DEFINITION: A full height section of wall constructed to resist horizontal loads with a minimum panel length.

Braced Wall Panel

- Full height, 12’ maximum
Braced Wall Panel
- Full height, 12’ maximum
- Minimum length based on bracing method

Braced Wall Panel
- Full height, 12’ maximum
- Minimum length based on bracing method
- No horizontal offsets

Braced Wall Panel
- Full height, 12’ maximum
- Minimum length based on bracing method
- No horizontal offsets
- No vertical offsets

Braced Wall Panel
- Full height, 12’ maximum
- Minimum length based on bracing method
- No horizontal offsets
- No vertical offsets
- Vertical, horizontal joints permitted (same material)
 - Studs at vertical joints
 - Blocking at horizontal joints

Uplift Load Path
- Wind speeds > 90 mph calculate uplift forces
- For forces > 100 plf:
 - Install hurricane clips or similar connectors, or
 - Designed per RDP

BRACED WALL LINES
A “Family” of Braced Wall Panels
DEFINITION: An imaginary straight line though the building which represents the centerline of lateral resistance provided by parallel BWPs.

Six Rules for BWLs

1. STRAIGHT LINES: BWLs cannot curve, bend or jog
2. EACH PLAN DIRECTION: BWLs go up/down and left/right
3. ALL FLOORS: Each floor level requires BWLs
4. PERMITTED TO FLOAT: BWLs are not required to be on actual walls
5. DEFINED ENDS: BWLs have a starting and ending point
6. MAXIMUM SPACING: Spacing between parallel BWLs is limited

Rule 1: Straight line

Rule 2: Each Plan Direction

Rule 3: All Floors

Rule 4: Permitted to Float
Rule 4: Permitted to Float

BWLS are not required to align with actual walls such that...
- BWLS can “float” between walls
- Parallel BWPs within 4’ apply to BWL
- BWLS can be offset from entire wall

Rule 5: Defined Ends

DEFINITION: The end of a BWL is defined as the...
- Intersection with another BWL
- Projected intersection at chamfered corner

Rule 6: Maximum Spacing

DEFINITION: The average distance between parallel BWLS.
- Sail area governs BWL spacing
- Parallel BWLS resist load
Rule 6: Maximum Spacing

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>ZONE</th>
<th>MAXIMUM TYP</th>
<th>PROJECT WALL LINE SPACING</th>
<th>FOOTNOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 mph to 130 mph</td>
<td>None</td>
<td>Minimum</td>
<td>Use Table R602.10.1.3</td>
<td></td>
</tr>
<tr>
<td>SDG A, B</td>
<td>Tornado</td>
<td>50 ft</td>
<td>up to 30 ft if side lengths ofM</td>
<td></td>
</tr>
<tr>
<td>SDG C</td>
<td>Tornado</td>
<td>50 ft</td>
<td>up to 30 ft if side lengths ofM</td>
<td></td>
</tr>
<tr>
<td>SDG D, E, F</td>
<td>Damage, heavy</td>
<td>35 ft</td>
<td>up to 30 ft if side lengths ofM</td>
<td></td>
</tr>
<tr>
<td>SDG G, H, I</td>
<td>Damage, heavy</td>
<td>50 ft</td>
<td>up to 30 ft if side lengths ofM</td>
<td></td>
</tr>
</tbody>
</table>

- Local wind zones: 90 mph, 100 mph
- Maximum spacing between parallel BWLs 60’
- SDC A and B: design for wind

Braced Wall Line Spacing

Larger sail areas require more bracing.

- 35'
- 60'
- >60'

Braced Wall Line Spacing

Larger sail areas require more bracing.

How to Determine BWL Spacing

- Use average spacing if adjacent BWLS have differing dimensions
 - Check the spacing from both sides at each end
 - Average the values measured

BWLS share load

Example:
- A & B share load in N/S direction
- 1 & 2 share load in E/W direction
BWL Spacing: “Where’s my help?”

BWL spacing = 27.67’

BWL spacing = (29.25’ + 14’ + 14’ + 29.25’) / 4 = 21.63’

BWL Spacing: “Where’s my help?”

BWL spacing = 38’

BWL spacing = (21.75 + 27.75) / 2 = 24.75’

BWL Spacing: “Where’s my help?”

BWL spacing = (21.75 + 6 + 21.75) / 3 = 16.5’

BWL Spacing: “Where’s my help?”

BWL spacing = (6 + 21 + 21 + 27.75) / 4 = 18.94’
BWL Spacing: “Where’s my help?”

- Side a: 44.75
- Side b: NA
- Side c: NA
- Side d: 15.5

BWL spacing = \((44.75 + 15.5) / 2\) = 30.13'

BWL Spacing: “Where’s my help?”

- Side a: 29.25
- Side b: 15.5
- Side c: NA
- Side d: 29.25

BWL spacing = \((29.25 + 15.5 + 29.25) / 3\) = 24.67'

Braced Wall Lines

- **TIP:** Consider a BWL to be the centerline of an 8' wide “braced wall band” where any perpendicular walls located completely within the band are not required to be braced.

Example – BWL 3

- 100 mph
- Farm house
- 15' eave to ridge
- 10' walls
- Finished interior
- CS WSP
- All joints blocked
- No hold downs
- Standard fastener spacing

Braced Wall Lines

- **TIP:** If placing BWPs strategically, all walls in a sunroom can be glass.

Example – BWL 3
Example – Average BWL Spacing?

Example – Average BWL Spacing?

WIND SPEED (MPH)	100
BWL DESIGNATION | 3
NUMBER OF FLOORS ABOVE BWL | 0
BWP METHOD | CS-WSP
AVERAGE BWL SPACING (ft) | 30
TABULAR REQUIREMENT (ft) | 7.5

Spreadsheet – Average BWL Spacing

Tabular Requirement

- Use Table R602.10.3(1)

Example – BWL 3

Spreadsheet – Tabular Requirement

- Use Table R602.10.3(2)
- Choose adjustments for:
 - Wind exposure
 - Roof height
 - Wall height
 - No. of BWLs
 - More

Adjustments

Example

BWLSpacing = (26 + 54) / 2 = 40'
Adjustments - Wind Exposure

Category B
- Urban - suburban
- Wooded

Category C
- Open terrain
- Grasslands, flat plains
- Wind flows over open water for 1,500 feet

Category D
- Unobstructed, flat
- Wind flows over open water for 1 mile

TIP: Houses located on a lake or reservoir with open water for 1,500 feet or more, requires Exposure Category C.

Adjustments - Eave-to-Ridge Height

- Flat, very low slope
- Low slope, up to 10 feet
- Steep slope

Adjustments - Wall Height

- Shorter walls
- 10-foot walls
- Tall walls
Example – BWL 3

Adjustments

TIP: When a BWL has more than one wall height, eave to ridge height, etc., adjust to the highest value for the required length of bracing.

Adjustments – Number of BWLs

Number of BWLs in one plan direction
Value adjusts for larger building with more BWLs.

Adjustments – Number of BWLs

TIP: When placing BWLs, consider the following:
- Place as few BWLs as possible
- BWLs that penetrate the entire house are the most efficient
- Placing BWLs can be an iterative process

Adjustments – No Interior Finish

- For unfinished areas
- Limited methods
- Adjustment factor 1.40
Example – BWL 3

<table>
<thead>
<tr>
<th>EXPOSURE</th>
<th>C</th>
<th>1.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAVE-TO-RIDGE HT (ft)</td>
<td>15</td>
<td>1.30</td>
</tr>
<tr>
<td>MAXIMUM WALL HEIGHT (ft)</td>
<td>10</td>
<td>1.00</td>
</tr>
<tr>
<td>NUMBER OF BWLs</td>
<td>3</td>
<td>1.30</td>
</tr>
<tr>
<td>OMIT INTERIOR FINISH</td>
<td>No</td>
<td>1.00</td>
</tr>
<tr>
<td>ADD PAIR #90° HOLD DOWNS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HORIZONTAL JOINTS BLOCKED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REDUCED FASTENER SPACING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REQUIRED BWP LENGTH (in)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjustments – Hold-Down

- Limited methods
- Top story only
- Add hold down
- Adjustment factor 0.8
- Not applicable to continuous sheathing

Adjustments – Omit Horiz. Blocking

- Horizontal blocking Any story
- Omit blocking from horizontal joints
 - 2.0 WSP, SFb, GB, PBS, HPS, CS-WSP, CS-SFP

Adjustments – Fastener Spacing

- Limited methods
- Reduce edge spacing to 4” o.c.
- Adjustment factor:
 - 0.7 for GB
 - 0.83 for WSP, CS WSP when supporting floor(s) above*
Example – BWL 3

EXPOSURE	15	1.20
EAVE-TO-RIDGE HT (ft)	1.00	
MAXIMUM WALL HEIGHT (ft)	3	1.30
NUMBER OF BWLs	No	1.00
OMIT INTERIOR FINISH	No	1.00
ADD PAIR BDGF HOLD DOWNS	Yes	1.00
HORIZONTAL JOINTS BLOCKED	Yes	1.00
REDUCED FASTENER SPACING	No	1.00

Required BWP Length (ft)

Required BWP Length = (tabular requirement) x (adjustment factor) x (adjustment factor) x (adjustment factor)...

Required BWP Length = 6' x 1.30 x 1.20 x 1.00 x 1.30 x 1.00 x 1.00 x 1.00 x 1.00 = 12.17'

Engineered Bracing Types

- Segmented shear walls
 - Separate shear walls
 - Hold down at each end

- Perforated shear walls
 - One large shear wall
 - Hold down at each end
 - Openings permitted

Prescriptive Bracing Types

- Intermittent bracing
 - Based on segmented
 - Sheath at BWP locations only

- Continuous sheathing
 - Based on perforated
 - Sheath all exposed areas
Intermittent Bracing Methods

- **LIB:** let in bracing
- **WSP:** wood structural panels
- **SFB:** structural fiberboard
- **GB:** gypsum board
- **PFH:** portal frame with hold downs
- **PFG:** portal frame at garages

LIB: Let-in Bracing

- 1x4 wood or metal strap
- 45° to 60° angle
- 2 8d nails per stud

TIP: Place LIB bracing in an interior wall that does not have full height gypsum board is an easy way to provide “hidden” bracing.

WSP: Wood Structural Panels

- 7/16” thick OSB or plywood
- Fasteners: 6d nails @ 6” o.c. edges, 12” o.c. field
- 48” minimum length

SFB: Structural Fiberboard

- 1/2” thick @ 16” o.c. stud spacing only
- Fasteners: 8d nails @ 3” o.c. edges, 6” o.c. field
- 48” minimum length

GB: Gypsum Board

- 1/2” thick
- Fasteners: nails or screws @ 7” o.c. edges and field
- 48” minimum length
GB: Gypsum Board

TIP: The fire separation between the garage and living space is an efficient way to get added bracing.

PFH: Portal Frame with Hold-down

- 7/16” thick OSB or plywood
- Cast in place hold downs required

TIP: Portal Frames

- Tested assembly
- Cannot be engineered
- Field deviations prohibited

TIP: Portal Frames at Garages

One Opening

Double Portal, one panel

Double Portal, two panels

Two Openings

Continuous header prohibited

optional face wall
TIP: Portal Frames at Garages

- One single and one double portal
- Continuous header prohibited
- Three single portals
- Continuous header prohibited

Three Openings

PFG: Portal Frame at Garage Opening

- 7/16" thick OSB or plywood
- At garage only
- No hold downs

Equivalent Products

- Equivalent to BWP
- Per ICC ES Evaluation Report
- Simpson Strong Tie:
 - Steel Strong Wall
 - Wood Strong Wall
 - SB Shearwall
- Hardy HFX Series Panels

Equivalence Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Manufacturer</th>
<th>Minimum Available Width</th>
<th>ICC ES ESR Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel Strong Walls</td>
<td>Simpson Strong Tie</td>
<td>12"</td>
<td>1679</td>
</tr>
<tr>
<td>Wood Strong Walls</td>
<td>Simpson Strong Tie</td>
<td>16"</td>
<td>1267</td>
</tr>
<tr>
<td>SB Shearwalls</td>
<td>Simpson Strong Tie</td>
<td>12"</td>
<td>2652</td>
</tr>
<tr>
<td>HFX Panels</td>
<td>Hardy Frame</td>
<td>5" (nailer not included)</td>
<td>2089</td>
</tr>
</tbody>
</table>

TIP: Some approved equivalent products can be stacked to brace two story, balloon framed walls.
Continuous Sheathing Bracing Methods

- CS WSP: wood structural panels
- CS SFB: structural fiberboard
- CS G: wood structural panels adjacent garage openings
- CS PF: continuous sheathing portal frame

CS-WSP: Wood Structural Panels

- 7/16” thick OSB or plywood
- Fasteners: 8d nails @ 6” o.c. edges, 12” o.c. field
- 24” minimum length

CS-SFB: Structural Fiberboard

- 1/2” thick structural fiberboard
- Fasteners: 8d nails @ 3” o.c. edges, 6” o.c. field
- 24” minimum length

CS-G: Wood Structural Panels at Garage

- 7/16” thick OSB or plywood
- Fasteners: 6d nails @ 6” o.c. edges, 12” o.c. field
- 24” minimum length; one opening only
- No floors above

CS-PF: Continuous Sheathing Portal Frame

- 7/16” thick OSB or plywood
- No hold downs
- Can be constructed on wood floor
- 4 panels maximum in one BWL
CS-PF: Continuous Sheathing Portal Frame

Pony Walls on Portal Frames

- Creates hinges
- Strap resists hinge forces
- Table R602.10.6.4 determines strap capacity

Pony Walls on Portal Frames

<table>
<thead>
<tr>
<th>MINIMUM WALL-TO-WALL BRACING NORMAL TO SHEATH</th>
<th>MINIMUM TOTAL WALL-TO-WALL BRACING</th>
<th>MINIMUM SHEATHING TO WALL PROTECTIVE</th>
<th>TENSION STRAP CAPACITY REQUIRED</th>
<th>TYPICAL APPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>101.95 mm</td>
<td>101.95 mm</td>
<td>101.95 mm</td>
<td>101.95 mm</td>
<td>101.95 mm</td>
</tr>
<tr>
<td>91.44 mm</td>
<td>91.44 mm</td>
<td>91.44 mm</td>
<td>91.44 mm</td>
<td>91.44 mm</td>
</tr>
<tr>
<td>81.96 mm</td>
<td>81.96 mm</td>
<td>81.96 mm</td>
<td>81.96 mm</td>
<td>81.96 mm</td>
</tr>
<tr>
<td>72.47 mm</td>
<td>72.47 mm</td>
<td>72.47 mm</td>
<td>72.47 mm</td>
<td>72.47 mm</td>
</tr>
<tr>
<td>62.98 mm</td>
<td>62.98 mm</td>
<td>62.98 mm</td>
<td>62.98 mm</td>
<td>62.98 mm</td>
</tr>
<tr>
<td>53.49 mm</td>
<td>53.49 mm</td>
<td>53.49 mm</td>
<td>53.49 mm</td>
<td>53.49 mm</td>
</tr>
<tr>
<td>43.99 mm</td>
<td>43.99 mm</td>
<td>43.99 mm</td>
<td>43.99 mm</td>
<td>43.99 mm</td>
</tr>
<tr>
<td>34.50 mm</td>
<td>34.50 mm</td>
<td>34.50 mm</td>
<td>34.50 mm</td>
<td>34.50 mm</td>
</tr>
<tr>
<td>24.99 mm</td>
<td>24.99 mm</td>
<td>24.99 mm</td>
<td>24.99 mm</td>
<td>24.99 mm</td>
</tr>
<tr>
<td>15.45 mm</td>
<td>15.45 mm</td>
<td>15.45 mm</td>
<td>15.45 mm</td>
<td>15.45 mm</td>
</tr>
<tr>
<td>6.85 mm</td>
<td>6.85 mm</td>
<td>6.85 mm</td>
<td>6.85 mm</td>
<td>6.85 mm</td>
</tr>
</tbody>
</table>

MINIMUM PANEL LENGTHS

The Contribution of Each Braced Wall Panel

BWP Minimum Length

DEFINITION: The dimension required for a length of sheathed wall to be considered a braced wall panel which contributes to the MWFRS.

Minimum Length of Intermittent BWPs

<table>
<thead>
<tr>
<th>UNMINIMUM LENGTH (COMBINED)</th>
<th>MINIMUM LENGTH (COMBINED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 ft</td>
<td>5 ft</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>
Minimum Length of Narrow Methods

<table>
<thead>
<tr>
<th>METHOD</th>
<th>MINIMUM LENGTH (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFH</td>
<td>Supporting end only: 18, 20, 22, 24</td>
</tr>
<tr>
<td>FFH</td>
<td>Supporting one story and over: 24, 25, 26, 28</td>
</tr>
<tr>
<td>TSD</td>
<td>24, 26, 28, 30</td>
</tr>
<tr>
<td>CS-WP</td>
<td>24, 26, 28, 30</td>
</tr>
<tr>
<td>CS-SFB</td>
<td>24, 26, 28, 30</td>
</tr>
</tbody>
</table>

- Based on height of adjacent opening(s)
- Where opening on both sides, use taller

Minimum Length of Continuous Sheathing

<table>
<thead>
<tr>
<th>Height of Adjacent Opening(s)</th>
<th>Minimum Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>9' tall wall 62" window</td>
<td>27" minimum</td>
</tr>
<tr>
<td>9' tall wall 80" door</td>
<td>30" minimum</td>
</tr>
</tbody>
</table>

DEFINITION: The dimension a BWP contributes towards a BWL’s required length of bracing.
BWP Contributing Length

TIP: Narrow methods PFH, PFG, CS PF and equivalent products are a way to provide more bracing than the actual wall length.

BWP Projected Length

- Angled BWPs contribute projected length only
- Can project to one BWL only

Example – BWL 3

Rules for BWPs on a BWL

1. **LENGTH:**
 Total contributing length of BWPs must exceed Required BWP Length
2. **SPACING:**
 BWPs cannot exceed a maximum spacing
3. **QUANTITY:**
 BWLs require a minimum number of BWPs
4. **LOCATION:**
 BWPs must be located at each end
5. **END CONDITIONS:**
 Ends of BWLs with continuous sheathing must be stiffened
Length
- Cumulative length of all BWPs’ contributing length
- Cumulative length ≥ Required BWP Length

Example – BWL 3

<table>
<thead>
<tr>
<th>Actual ≥ Required?</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWPs ≤ 20’ Apart?</td>
<td></td>
</tr>
<tr>
<td>≥ 2 Panels in BWL?</td>
<td></td>
</tr>
<tr>
<td>BWP Begins ≤ 10’ from Ends?</td>
<td></td>
</tr>
<tr>
<td>Continuous Sheathing End Conditions</td>
<td>END 1 END 2</td>
</tr>
<tr>
<td>BWL Compliance</td>
<td></td>
</tr>
</tbody>
</table>

Spacing
- BWPs cannot exceed a distance of 20’ edge to edge.

Number
- BWLs must have a minimum of two BWPs
- Exception: BWLs ≤ 16’ can have one 48” BWP
Example – BWL 3

<table>
<thead>
<tr>
<th>ACTUAL ≥ REQUIRED?</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWPs ≤ 20’ APART?</td>
<td>Yes</td>
</tr>
<tr>
<td>≥ 2 PANELS IN BWL?</td>
<td>Yes</td>
</tr>
<tr>
<td>BW PENS ≤ 10’ FROM ENDS?</td>
<td>Yes</td>
</tr>
<tr>
<td>CONTINUOUS SHEATHING END CONDITIONS</td>
<td>END 1</td>
</tr>
<tr>
<td>BWL COMPLIANCE</td>
<td></td>
</tr>
</tbody>
</table>

Location

- Located at BWL end, or
- Begins within 10’ of BWL end

Example – BWL 3

<table>
<thead>
<tr>
<th>ACTUAL ≥ REQUIRED?</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWPs ≤ 20’ APART?</td>
<td>Yes</td>
</tr>
<tr>
<td>≥ 2 PANELS IN BWL?</td>
<td>Yes</td>
</tr>
<tr>
<td>BW PENS ≤ 10’ FROM ENDS?</td>
<td>Yes</td>
</tr>
<tr>
<td>CONTINUOUS SHEATHING END CONDITIONS</td>
<td>END 1</td>
</tr>
<tr>
<td>BWL COMPLIANCE</td>
<td></td>
</tr>
</tbody>
</table>

End Conditions

- End panel BWL since...
 - ≤ 64” opening
 - 8’ tall wall
 - BW L 24” panel length
- Return panel
- End Condition 1

End Conditions

- End panel BWL
- No return panel
- End Condition 2
- Add 800 lbs. hold down device
End Conditions

- 48” sheathing at end also equivalent to hold down device
- End panel BWP
- No return panel or hold down
- End Condition 3

End Conditions

- End panel ≠ BWP
- End panel 24”
- Return panel
- First BWP begins ≤ 10’ from end
- End Condition 4

End Conditions

- No end panel
- No return panel
- First BWP begins ≤ 10’ from end
- End Condition 5
- Add 800 lbs. hold down device

TIP: Where 2 BWLs with continuous sheathing meet at a corner and one side requires a hold down, the opposite side will usually require a hold down or 48” end panel (End Condition 3).

Example – BWL 3

<table>
<thead>
<tr>
<th>ACTUAL ≥ REQUIRED?</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWPs ≤ 20’ APART?</td>
<td>Yes</td>
</tr>
<tr>
<td>≥ 2 PANELS IN BWL?</td>
<td>Yes</td>
</tr>
<tr>
<td>BWP BEGINS ≤ 10’ FROM ENDS?</td>
<td>Yes</td>
</tr>
<tr>
<td>CONTINUOUS SHEATHING END CONDITIONS</td>
<td>END 1 END 2</td>
</tr>
</tbody>
</table>

Example – BWL 3

<table>
<thead>
<tr>
<th>ACTUAL ≥ REQUIRED?</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWPs ≤ 20’ APART?</td>
<td>Yes</td>
</tr>
<tr>
<td>≥ 2 PANELS IN BWL?</td>
<td>Yes</td>
</tr>
<tr>
<td>BWP BEGINS ≤ 10’ FROM ENDS?</td>
<td>Yes</td>
</tr>
<tr>
<td>CONTINUOUS SHEATHING END CONDITIONS</td>
<td>END 1 END 2</td>
</tr>
</tbody>
</table>

BWL COMPLIANCE | Pass
Combining Methods and Materials in the Same Braced Wall Line

Mixing Methods
- Mixing methods from BWL to BWL is permitted
- BWL must include return panels, if applicable

Mixing Methods
- Mixing intermittent methods along a BWL is permitted
- BWL must be designed for weakest method

Mixing Methods
- Any narrow method can mix with CS WSP
- No other methods can mix with CS SFB
- ABW, PFH, PFG, CS-PF permitted in CS-WSP

Mixing Methods
- Mixing intermittent and continuous permitted
 - CS on exterior
 - Intermittent on interior
 - Design for weakest methods
- End conditions required

Cripple Walls
DEFINITION: A framed wall extending from the top of the foundation to the underside of the floor framing of the first story above grade.
Cripple Wall Bracing – Option 1

- Top Story
- 1st Story

Cripple Wall Story:
Required BWP Length = 1st floor x 1.15

Cripple Wall Bracing – Option 2

- 2nd Story becomes 3rd Story
- 1st Story becomes 2nd Story

Cripple Wall Story = 1st Story

Completing the Load Path: Roof

- Roof diaphragm to BWPs

Roof Blocking

- Roof diaphragm to BWPs

- ≤ 9.25”
 No blocking required

- > 9.25” – 15.25”
 2x blocking

- 15.25” – 48”
 Soffit panel or…

Roof Blocking

- Roof diaphragm to BWPs

- 15.25” – 48”
 Vertical blocking panel
Completing the Load Path: Interior BWPs

- Interior BWPs to floors

Interior BWP Blocking

- Interior BWPs to floors
- Where joists are perpendicular:
 - Full height blocking
 - Between joists
 - Full length of BWP

Interior BWP Blocking

- Where joists are parallel:
 - Option 1: provide additional joists
 - Option 2: provide additional blocking
 - Perpendicular @ 16” o.c.
 - Full length of BWP

TIP: Placing an interior BWP within a bearing wall will eliminate the need for added blocking.

Completing the Load Path: Stem Walls

- Masonry or concrete
- BWPs to stem walls
- Reinforce stem walls
 - < 48” long BWPs
 - Stem walls up to 48” high
 - Stem walls > 48” high require RDP design
Completing the Load Path: Stem Walls
- Stem wall height ≤ 24"
- Cast in place #4 dowels
- Bend dowels into bond beam
- Stem wall up to 48” high
- Cast in place #4 dowels
- Additional “hair pin” #4 rebar lapped to dowels

Stem Walls
- Non rebar option
- Stem wall up to 48” high
- Cast in place 5/8” threaded rod
- Epoxy option with 5,000 lbs. pull out value
- 2” cut washers

Completing the Load Path: Cantilevers
- Short cantilevered diaphragms can transfer load to BWPs
- Cantilevers per R502.3.3 permissible

Completing the Load Path: Piers
- Walls above piers per R602.10
- Piers by RDP
- Common error: sunrooms on posts
- Common solution: cross bracing

Wall Bracing Omissions
- Construction conditions not addressed in IRC
- Sheath the following:
 - Gable end walls
 - Gable dormers
 - Narrow shed dormers
- Treat the following as full wall or part of BWL:
 - Full width shed dormers
PART 3
R602.12 – “PRACTICAL” WALL BRACING

“Practical” Wall Bracing

- Virginia only
- Simpler
- Braced wall panels (BWP)
- Circumscribed rectangles
- Based on “Classic”

Alternate Prescription Solutions

- APA Simplified Wall Bracing
- IRC Simplified Wall Bracing (national version)

Practical Spreadsheet

<table>
<thead>
<tr>
<th>SHEATHING MATERIAL</th>
<th>EDGE FASTEN</th>
<th>FIELD FASTEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSB or plywood</td>
<td>6”</td>
<td>12”</td>
</tr>
<tr>
<td>Structural fiberboard</td>
<td>3”</td>
<td>6”</td>
</tr>
</tbody>
</table>

Sheathing Materials

- Exterior
 - 7/16 OSB or plywood (fasten 6” edge, 12” field)
 - 1/2 structural fiberboard (fasten 3” edge, 6” field)
- Sheath entire exterior (continuous sheathing)
- Cannot mix materials

- Interior
 - 1/2 gypsum board (fasten 7” edge, field)

MATERIALS AND PANELS
Adapting Braced Wall Panels to Practical Wall Bracing
Braced Wall Panel

- Same as “classic”
 - Full height
 - No offsets
 - Splices permitted
- Minimum Length:
 - Interior: 48”
 - Exterior, per Table R602.12.2
- “Classic” carryovers:
 - Narrow methods: ABW, PFH, PFG, CS PF

Circumscribed Rectangle

DEFINITION: A rectangle that surrounds a building or portions thereof with a minimum length of bracing assigned to each side.

Circumscribed Rectangles

- Unlimited rectangles permitted
- Identify common rectangle sides

Circumscribed Rectangles

- Include enclosed offsets and projections
 - Sunrooms
 - Garages
 - Bay windows
- Exclude open structures
 - Decks
 - Carports
 - Screened porches
- Exclude chimneys

Circumscribed Rectangles

- Different rectangle(s) for each floor

Circumscribed Rectangles

- Can be applied to additions
Circumscribed Rectangles

- Maximum size: 80' x 80'

- Maximum aspect ratio: long side 3:1 short side

Rectangles can be skewed

Applies to walk out conditions

TIP: One rectangle relies solely on exterior bracing. Multiple rectangles results in complicated interiors. Deciding the most efficient number of rectangle may be an iterative process.

Example

- 100 mph
- Farm house
- 15' eave to ridge
- 10' walls
- Exterior walls sheathed in OSB
- Finished interior
- Standard fastener spacing

100 mph Farm house 15’ eave to ridge 10’ walls Exterior walls sheathed in OSB Finished interior Standard fastener spacing
Example
- Draw rectangle
- Determine aspect ratio

Exterior BWPs on or Facing Rectangle Side
- Top
- Right
- Bottom
- Left

TIP 1: Assign a partially obscured BWP to the parallel rectangle side its unobscured portion faces.
TIP 2: Assign an wholly obscured BWP to either parallel rectangle side.

Partially Obscured

Obscured
1. **Interior BWP on Rectangle Side**

2. **Interior BWP Facing Rectangle Side**

3. **Projections of Angled BWPs**

4. **Projections of Angled BWPs**

5. **Shared BWPs at Skewed Rectangles**

- Apply BWP to skewed rectangle (green) if it is located on.
- Apply BWL projections to non skewed rectangle (red).
BWP on Common Rectangle Sides

Example – Rear Rectangle Side

Example – Rear Rectangle Side

Tabular Requirement

- Use Table R602.12.4

Example – Rear Rectangle Side

Table 602.10.3

<table>
<thead>
<tr>
<th>RECTANGLE SIDE</th>
<th>FRONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF FLOOR LEVELS ABOVE</td>
<td>0</td>
</tr>
<tr>
<td>EAVE-TO-RIDGE HEIGHT (H)</td>
<td>15</td>
</tr>
<tr>
<td>EXTERIOR BWP MATERIAL</td>
<td>Wood Structural Panels</td>
</tr>
<tr>
<td>TABULAR REQUIRED (H)</td>
<td>14.3</td>
</tr>
</tbody>
</table>
Adjustments

- Use footnotes from Table R602.12.4:
 - Exposure Category C
 - Wall heights
 - Fastener spacing

Adjustments - Wind Exposure

- Category C
 - Open terrain
 - Grasslands, flat plains
 - Wind flows over open water for 1,500 feet

Example – Rear Rectangle Side

<table>
<thead>
<tr>
<th>Tabular Required (ft)</th>
<th>14.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure</td>
<td>C</td>
</tr>
<tr>
<td>Wall Height (ft)</td>
<td>1.20</td>
</tr>
<tr>
<td>Adj.</td>
<td></td>
</tr>
<tr>
<td>Reduced Fastener Spacing</td>
<td></td>
</tr>
<tr>
<td>Required BWP Length (ft)</td>
<td></td>
</tr>
<tr>
<td>Value from Common Rectangle Side</td>
<td></td>
</tr>
<tr>
<td>Total Required BWP Length (ft)</td>
<td></td>
</tr>
</tbody>
</table>

Adjustments – Wall Height

<table>
<thead>
<tr>
<th>Wall Height (ft)</th>
<th>Adj.</th>
<th>Tabular Required (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0.95</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1.05</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1.10</td>
</tr>
</tbody>
</table>

Example – Rear Rectangle Side

<table>
<thead>
<tr>
<th>Tabular Required (ft)</th>
<th>14.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure</td>
<td>C</td>
</tr>
<tr>
<td>Wall Height (ft)</td>
<td>10</td>
</tr>
<tr>
<td>Adj.</td>
<td></td>
</tr>
<tr>
<td>Reduced Fastener Spacing</td>
<td></td>
</tr>
<tr>
<td>Required BWP Length (ft)</td>
<td></td>
</tr>
<tr>
<td>Value from Common Rectangle Side</td>
<td></td>
</tr>
<tr>
<td>Total Required BWP Length (ft)</td>
<td></td>
</tr>
</tbody>
</table>

TIP: When walls assigned to a rectangle side have more than one wall height, eave to ridge height, etc., adjust to the highest value for the required length of bracing.
Adjustments – No Interior Finish

1.40

Example – Rear Rectangle Side

<table>
<thead>
<tr>
<th>TABULAR REQUIRED (ft)</th>
<th>14.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPOSURE</td>
<td>C</td>
</tr>
<tr>
<td>WALL HEIGHT (ft)</td>
<td>10</td>
</tr>
<tr>
<td>OMIT FINISHED INTERIOR</td>
<td>NO</td>
</tr>
<tr>
<td>REDUCED FASTENER SPACING</td>
<td>NO</td>
</tr>
<tr>
<td>REQUIRED BWP LENGTH (ft)</td>
<td></td>
</tr>
</tbody>
</table>

Value from Common Rectangle Side

Total Required BWP Length (ft)

Adjustments – Fastener Spacing

4" fastener spacing

0.83

OSB or plywood (exterior) when supporting floor(s) above

0.7

gypsum board (interior)*

*Virginia interpretation

Example – Rear Rectangle Side

<table>
<thead>
<tr>
<th>TABULAR REQUIRED (ft)</th>
<th>14.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPOSURE</td>
<td>C</td>
</tr>
<tr>
<td>WALL HEIGHT (ft)</td>
<td>10</td>
</tr>
<tr>
<td>OMIT FINISHED INTERIOR</td>
<td>NO</td>
</tr>
<tr>
<td>REDUCED FASTENER SPACING</td>
<td>NO</td>
</tr>
<tr>
<td>REQUIRED BWP LENGTH (ft)</td>
<td>17.2</td>
</tr>
</tbody>
</table>

Value from Common Rectangle Side

Total Required BWP Length (ft)

Required Length of Bracing

- Multiply tabular requirements by each adjustment factor:

 \[
 \text{Adjusted length} = (\text{tabular value}) \times (\text{adjustment factor}) \times (\text{adjustment factor}) \times (\text{adjustment factor}) \ldots
 \]

Required BWL Length = 14.3' x 1.20 x 1.00 x 1.00 x 1.00 = 17.2'

Example – Rear Rectangle Side

<table>
<thead>
<tr>
<th>TABULAR REQUIRED (ft)</th>
<th>14.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPOSURE</td>
<td>C</td>
</tr>
<tr>
<td>WALL HEIGHT (ft)</td>
<td>10</td>
</tr>
<tr>
<td>OMIT FINISHED INTERIOR</td>
<td>NO</td>
</tr>
<tr>
<td>REDUCED FASTENER SPACING</td>
<td>NO</td>
</tr>
<tr>
<td>REQUIRED BWP LENGTH (ft)</td>
<td>17.2</td>
</tr>
</tbody>
</table>

Value from Common Rectangle Side

Total Required BWP Length (ft)

Common Rectangle Sides
- Add Required BWP Length for each side:
 Adjusted length + Adjusted length

Example – Rear Rectangle Side
- Repeat for common rectangle side and add required value here.

Exterior BWP Minimum Length
- Based on adjacent opening(s)
 - Adjacent garage opening or
 - Height of adjacent opening

Exterior BWP Minimum Length
- Based on adjacent opening(s)
 - Adjacent garage opening or
 - Height of adjacent opening

Exterior BWP Minimum Length
- Based on adjacent opening(s)
 - Adjacent garage opening or
 - Height of adjacent opening

Exterior BWP Minimum Length
- Based on adjacent opening(s)
 - Adjacent garage opening or
 - Height of adjacent opening
Braced Wall Panel

- Contributing Length
 - Exterior actual
 - Interior 0.5 x actual
 - "Classic" narrow methods:
 - PFH 48"
 - PFG, CS PF 1.5 x actual
 - Equivalent products 48"

Example – Rear Rectangle Side

Distribution Rule 1

- BWPs located ≤ 12’ from house corner

Example – Rear Rectangle Wall

Table: Total Required BWP Length

<table>
<thead>
<tr>
<th>TOTAL REQUIRED BWP LENGTH (ft)</th>
<th>17.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTUAL BWP</td>
<td></td>
</tr>
<tr>
<td>CONTRIBUTING LENGTH (ft)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>EXTERIOR</td>
</tr>
<tr>
<td>2</td>
<td>EXTERIOR</td>
</tr>
<tr>
<td>3</td>
<td>EXTERIOR</td>
</tr>
<tr>
<td>4</td>
<td>EXTERIOR</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>TOTAL BWP LENGTH (ft)</td>
<td>27.25</td>
</tr>
<tr>
<td>ACTUAL ≥ REQUIRED?</td>
<td>PASS</td>
</tr>
</tbody>
</table>
Distribution Rule 1
- BWPs located ≤ 12’ from interior rectangle corner

Distribution Rule 2
- Edge to edge distance between adjacent BWPs ≤ 20’

Distribution Rule 3
- Wall > 8’ require at least one BWP
- Walls ≤ 8’ are permitted no BWPs

Example – Rear Rectangle Side

1
2
3
4
Example – Rear Rectangle Side

<table>
<thead>
<tr>
<th>ACTUAL ≥ REQUIRED?</th>
<th>PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWPs ≤ 20' APART?</td>
<td>YES</td>
</tr>
<tr>
<td>BWPs WITHIN 12' OF CORNERS?</td>
<td>YES</td>
</tr>
<tr>
<td>COMPLIANT NUMBER OF BWPS</td>
<td>YES</td>
</tr>
<tr>
<td>BWLP COMPLIANCE PASS-FAIL</td>
<td>PASS</td>
</tr>
</tbody>
</table>

BWP Support

- Refer to R602.10.9
- Cantilevered floor restriction
- Masonry stem walls

BWP Connections

- Refer to R602.10.8
- Connections to framing
- Connections to roof

BWP Adjacent Balloon-Framed Walls

- Balloon framed walls:
 - Two story foyers
 - Family rooms
- BWP locations
 - Each side of two story portion
 - Each floor

“CLASSIC” CARRYOVERS
Practical Wall Bracing Meets “Classic”
SUM UP
Tying Up Loose Ends

<table>
<thead>
<tr>
<th>Classic vs. Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>R602.10</td>
</tr>
<tr>
<td>R602.12</td>
</tr>
<tr>
<td>8 materials</td>
</tr>
<tr>
<td>4 narrow methods</td>
</tr>
<tr>
<td>Unlimited size houses</td>
</tr>
<tr>
<td>Braced wall panels</td>
</tr>
<tr>
<td>Braced wall lines</td>
</tr>
<tr>
<td>All detached homes</td>
</tr>
<tr>
<td>All townhouses</td>
</tr>
<tr>
<td>End conditions</td>
</tr>
<tr>
<td>BWPs 10’ from BWL end</td>
</tr>
<tr>
<td>Greater flexibility</td>
</tr>
<tr>
<td>Nationwide</td>
</tr>
</tbody>
</table>

Publications

- **Guide to the 2012 IRC Wall Bracing Provisions** (APA)
- **Wind Bracing** (Fairfax County)
- **Prescriptive Design Guide** (Simpson Strong Tie)
- **IRC Wall Bracing Guide for Builders, Designers and Plan Reviewers** (Foam Sheathing Coalition)
- Notes from this class (available on fairfaxcounty.gov)

Resources

- Chuck Bajnai, 804 717 6428, bajnaic@chesterfield.gov
- Brian Foley, 703 324 1842, brian.foley@fairfaxcounty.gov
- APA – The Engineered Wood Association, 253 620 7400, apawood.org
- Simpson Strong Tie, (800) 999 5099, strongtie.com
- ICC ES, 1 800 423 6587 x66546, icc-es.org

THE END