In addition to plant foods and wild game, prehistoric people also quarried raw materials for the manufacture of tools. Within the management area, there are two sources of lithic raw materials, rock outcrops and river cobbles. Both raw material sources were used to provide Native Americans a vast range of materials from which to fashion stone tools.

WHAT’S IN A NAME?

Accotink is an Algonquin name, reminding us of the first inhabitants of Northern Virginia. It is also the name of the creek that courses through Eakin Park, Mantua Park, Wakefield Park and Accotink Stream Valley. As was the custom with the English, the naming of a stream often corresponded to the name of the largest Indian village located along its shores. The village of Accotink has never been found.

ADAPTATION

Within the plan area of Lake Accotink Park, there is evidence of much earlier Indian groups, culturally unrelated to those Captain Smith and other early European explorers found. Native American occupation and land use began about 12,000 years ago. Essentially, these people were nomadic, moving across the area in response to movements of wild game herds and seasonal changes in the environment. Remains of their material culture is present in the form of stone tools dating from 10,000 years ago to 7,000 years ago. As the environment changed and large game herds were depleted, Native Americans adapted as well. They became more sedentary, residing at camps for longer time periods. Consequently, a larger portion of their food consisted of plants and their efforts to procure those plants became more systematic and intensive, leading to early forms of agriculture. By the time of European contact most Native Americans had moved closer to the major rivers forming sedentary villages.

TOOLS

The original inhabitants of the lands around Lake Accotink Park lived as semi-sedentary hunters and gatherers who moved seasonally to follow game. The river system provided them with a wealth of resources as well as a means of transportation. The waters teemed with fish and deer and other animals were drawn to its banks that provided ample meat from hunting. Gathering and farming were also important lifeways. Early peoples were also drawn to the area due to the prolific amount of quartz and other materials from which they could make tools, including projectile points, knives and scrapers. Later peoples spoke varying forms of the Algonquin language and included members of the Dogue, Piscataway, and Patowomeke tribes. These tribes represented the most northern boundary of the Powhatan confederation. With European advancement along the waterways beginning in the early 17th century, the Native Americans were slowly pushed off their lands.

In addition to plant foods and wild game, prehistoric people also quarried raw materials for the manufacture of tools. Within the management area, there are two sources of lithic raw materials, rock outcrops and river cobbles. Both raw material sources were used to provide Native Americans a vast range of materials from which to fashion stone tools.

Stone workers, also known as flint knappers, preferred materials such as quartz and quartzite because their hardness made them ideal for sharp edged weapons like projectile points. When stone flakes are found in high concentrations in one area, it can imply that tool making activity occurred there. These concentrations help identify sites, or past places of human activity.

Turtle shell used by Native Americans, likely as a bowl or dipper.
THE TRAIN PLAYS A PART IN THE WAR

Because the O & A Railroad was an important part of the Union army’s supply line in Northern Virginia, it was a prominent target for Confederate raiders including JEB Stuart’s cavalry and John S. Mosby’s raiders. In addition to these attacks by organized soldiers, civilians participated in night-time guerilla raids tearing up tracks and attempting to derail trains.

Culverts underneath the old rail bed provided shelter for soldiers and civilians waiting to sabotage passing trains. In response to a failed derailment attempt on July 26, 1863, Union General George G. Meade issued a proclamation calling for severe punishment to be levied against civilians interfering with railroad activity. Soldiers of the 155th New York and 4th Delaware camped on the south side of the railroad tracks in 1863 to combat these attacks on the railroad.

The original railroad trestle that was built in 1851 as part of the Orange and Alexandria Railroad was made of wood – making it a prime target for Confederate raiders seeking to disrupt the Union supply lines. At the end of December 1862, following the Battle of Fredericksburg, Confederate General J.E.B. Stuart assembled 1,800 cavalrymen and headed into northern Virginia to locate food and horses. During his 28 December 1862 raid on nearby Burke’s Station, Confederate General J.E.B. Stuart dispatched 12 men under the command of Fitz Lee, Robert E. Lee’s nephew, to burn the railroad bridge over Accotink Creek. Stuart also tore up the rails and cut telegraph lines near Burke Station before withdrawing. The trestle was later rebuilt and continued carrying Union supplies for the duration of the war. In 1917 it was rebuilt out of wrought iron and later a new bridge from concrete and steel. It should be noted that the current trestle is not in the location of the original 1851 trestle.

Corduroy Road

In June of 2016, the Archaeological & Collections Branch of the Fairfax County Park Authority was referred to a road construction project near the entrance to the park. A section approximately 90 feet long of corduroy road was discovered and documented. This road type was made by placing sand-covered logs perpendicular to the direction of the road over a low or swampy area. The result was an improvement over impassable mud or dirt roads, yet rough in the best of conditions and a hazard to horses due to loose logs. Based on the proximity of the corduroy road to other Civil War era sites and features, including the Orange and Alexandria Railroad, the feature was interpreted as middle 19th century in origin and likely of Civil War origin. After the feature was fully documented, it was left in place. The better protect the feature, it was capped by a layer of gravel prior to repaving the existing road. The feature was found to be intact and highly significant and likely eligible for inclusion onto the National Register of Historic Places.

Remnants of War

Brick and stone culverts constructed to allow water to flow beneath the rail bed provided shelter for soldiers and saboteurs waiting for passing trains.

Brick from railroad culvert, carved by a Confederate soldier

Grape shot was used primarily against massed assaults at close range. It was a projectile consisting of small iron or lead balls tied in canvas, which functioned much like a sawed-off shot gun. The canvas disintegrated when fired from the cannon, sending the balls in multiple directions.

Brass sword scabbard chape, designed to prevent the sword blade tip from cutting through the end of the leather scabbard.

Ninety-four percent of battlefield casualties were attributable to the minie ball. Adding grooves to the inside of the gun barrel imparted spin on the bullet, adding accuracy and increased range of rifled weapons.

Three brass jacket buttons recovered from Lake Accotink Park, circa 1871.
The Lake Accotink Park access road was built on the original rail bed of the Orange and Alexandria Railroad (O & A). The Orange & Alexandria Railroad was chartered by the Legislature of the Commonwealth of Virginia on March 27, 1848 and was authorized to run from Gordonsville through Orange Court House and Culpeper Court House to Alexandria. Construction on the mainline began in 1850. This made it easier to transport imported goods from the coast and raw materials from the interior around the state.

When the Civil War broke out in 1861, railroads were also used to transport troops and war materials around the state. During the Civil War, the O & A was one of the most fought over railroads in Virginia. The Orange and Alexandria would serve as a main highway for the troops on both sides to march on and be supplied. The North pursued control of the railroad as its quickest route to Richmond while control also helped to cut Southern communications to the Shenandoah Valley. The South defended the railroad against the Northern invading force with the result that several major campaigns (First and Second Manassas, Bristoe) and dozens of battles and smaller engagements took place on or near the tracks of the O & A.

After the Civil War, the Baltimore and Ohio Railroad (B & O) began to purchase interest in the Orange and Alexandria which was significantly damaged by the war. The O & A was then merged with the newly bankrupt Manassas Gap to form the Virginia Midland Railway. By 1873 the B & O Railroad had gained a controlling interest in the company. In time, it would become part of the Richmond & Danville Railroad. In 1894, it was purchased by Southern Railways and eventually became part of the Norfolk Southern line in 1982.
JOVITE

An explosive manufacturing plant within Accotink Lake Park and its explosion in 1900 remains somewhat shrouded in mystery. Apparently it was built and located near Ditchley Station (off Reservoir Road) in 1884 or 1885. The Jovite Powder Works factory was located on property originally owned by the Lee family, who owned Ravensworth. Newspaper reports at the time that the plant was fully operational in 1885. It manufactured an explosive called Jovite which may have been a relatively new explosive mixture at the time. Indications are the military wanted an explosive to put in artillery shells that did not blow up the artillery pieces. A newspaper article mentions that Jovite was still being reviewed by Lt. Douglas MacArthur in 1908, several years after the explosion that destroyed the plant.

LAKE ACCOTINK BECOMES A PARK

In 1960, all the lake was no longer needed by the U.S. Government as a supply of safe drinking water, much of what is Lake Accotink Park today was leased to the Park Authority. Boating and picnic facilities were established and enjoyed by Springfield residents. Shortly thereafter, the Park Authority purchased 242 acres of land from the federal government for $88,250.

CIVILIAN CONSERVATION CORPS

During the Depression, in 1933, President Franklin D. Roosevelt's administration established the Civilian Conservation Corps (CCC) to help unemployed men, ages 18 to 25. CCC men created state parks, improved soil conservation, conducted reforestation and constructed fire trails. The men received food, clothing, shelter, health care, education and were paid $30 monthly, of which $25 was sent home. Projects of the racially segregated Fort Belvoir CCC camp, Army 3 VA-2399 C (Colored), included building fire trails through forested areas of Fairfax County. One such trail started at Old Keene Mill Road, crossed nearby Accotink Creek, and then intersected with several old logging roads.

THE DAM

In 1912, the War Department purchased a large plot of land that had once been part of the Belvoir estate built by William Fairfax in 1741. The land was meant to serve as a summer camp and rifle range for the engineering corps stationed at nearby Washington Barracks in Washington, DC. With the outbreak of World War I, the camp was turned into a more permanent establishment and named Camp A. A. Humphreys, after Union General Andrew Atkinson Humphreys, a distinguished Civil War engineer. With plans to permanently move the Army Corps of Engineers there in 1919, a water source was needed. Originally known as the Springfield Dam when it was first built in 1918, the structure created Lake Accotink as a safe, stable water source. The dam originally cost $100,000 to build and was contracted to the Ambursen Construction Company. The reservoir it created covered 110 acres and was 23 feet deep. Because the dam threatened the integrity of the railroad bridge, the first dam was dismantled in 1922. In 1943, the Army Corps of Engineers rebuilt the dam for $19,000. Today Camp A. A. Humphreys is known as Fort Belvoir.

CAROUSEL

The Lake Accotink carousel is the oldest carousel currently in use in Fairfax County. It is a 36-foot carousel built by the Allan Herschell Company sometime between 1937 and 1945. Originally it had three rows of ten horses, each half carved wood and cast aluminum made earlier, sometime between 1926 and 1931. Today, missing horses have been replaced by wooden chariots. The carousel was originally part of a traveling carnival. The Fairfax County Park Authority purchased it from Fairhill Farm Antiques in 1978. Most carousels at parks today are made from aluminum or fiberglass. Many of these have been modeled from the original hand carved horses of the golden age of carousels. Hand carved horses declined in popularity throughout the 1930s and 1940s because new mechanized processes made it possible to "carve" horses faster than they could be made by hand. Lake Accotink Park's carousel is an example of a carousel made during this transition period as new mechanical processes became available.

In 1960, all the lake was no longer needed by the U.S. Government as a supply of safe drinking water, much of what is Lake Accotink Park today was leased to the Park Authority. Boating and picnic facilities were established and enjoyed by Springfield residents. Shortly thereafter, the Park Authority purchased 242 acres of land from the federal government for $88,250.

During the Depression, in 1933, President Franklin D. Roosevelt's administration established the Civilian Conservation Corps (CCC) to help unemployed men, ages 18 to 25. CCC men created state parks, improved soil conservation, conducted reforestation and constructed fire trails. The men received food, clothing, shelter, health care, education and were paid $30 monthly, of which $25 was sent home. Projects of the racially segregated Fort Belvoir CCC camp, Army 3 VA-2399 C (Colored), included building fire trails through forested areas of Fairfax County. One such trail started at Old Keene Mill Road, crossed nearby Accotink Creek, and then intersected with several old logging roads.

The Lake Accotink carousel is the oldest carousel currently in use in Fairfax County. It is a 36-foot carousel built by the Allan Herschell Company sometime between 1937 and 1945. Originally it had three rows of ten horses, each half carved wood and cast aluminum made earlier, sometime between 1926 and 1931. Today, missing horses have been replaced by wooden chariots. The carousel was originally part of a traveling carnival. The Fairfax County Park Authority purchased it from Fairhill Farm Antiques in 1978. Most carousels at parks today are made from aluminum or fiberglass. Many of these have been modeled from the original hand carved horses of the golden age of carousels. Hand carved horses declined in popularity throughout the 1930s and 1940s because new mechanized processes made it possible to "carve" horses faster than they could be made by hand. Lake Accotink Park's carousel is an example of a carousel made during this transition period as new mechanical processes became available.
Land first granted to William Fitzhugh for 21,996 acres in 1701.

William Fitzhugh died. Control of amassed land holdings of 54,000 acres property shifted to his heirs.

Circa 1796
The Ravensworth Mansion was constructed.

October 1694
Land first granted to William Fitzhugh for 21,996 acres.

Property willed to William Henry Fitzhugh, great-great grandson of William Fitzhugh, when he was an infant.

Property listed as owned by G. W. Custis Lee 2,397 acres.

Timeline:
- April 1874: The property was passed to Mary Custis Lee who died shortly thereafter. The property was divided among her five children.
- May 1830: William Henry Fitzhugh died. 8,000 acres willed to his wife, A. M. Fitzhugh.
- 1875: The property was listed as owned by G. W. Custis Lee 2,397 acres.
- April 1874: The Ravensworth Mansion was constructed.
- April 1874: The property was passed to Mary Custis Lee who died shortly thereafter. The property was divided among her five children.
- May 1830: William Henry Fitzhugh died. 8,000 acres willed to his wife, A. M. Fitzhugh.

1913
G. W. Custis Lee died and the property was willed to Robert E. Lee Jr. and George Bolling Lee.

1918
The Springfield Dam was built for $100,000. The dam on Accotink Creek resulted in creating the reservoir lake of 110 acres, 23 feet deep.

1922
Robert E. Lee Jr. passed away, and willed 300 acres to wife, Mary M. Lee.

1926
The Ravensworth Mansion burned down.

1944
Mary M. Lee and James Bolling Lee sold 248 acres to the United States through eminent domain for the Springfield Dam Project.

1957
The last Lee relative, who lived on a portion of the Ravensworth Tract, sold the property to create the subdivision Ravensworth Farm, next to the lake.

1960
The County Park Authority leased the park land from the federal government for 25 years. Boating rental and a concession stand were established.

1965
The Park Authority purchased 242 acres of Lake Accotink property from the federal government for $88,250.

March 1968
Fairfax County got a grant to assist in the purchase of 265 additional acres of park land.

1968
The dam was dismantled when engineers felt it threatened the safety of the railroad bridge.

1965
The Ravensworth Mansion burned down.

1972
The Ravensworth Mansion was constructed.

1984
The Park Authority purchased 242 acres of Lake Accotink property from the federal government for $88,250.

1984
The dam was dismantled when engineers felt it threatened the safety of the railroad bridge.

1957
The last Lee relative, who lived on a portion of the Ravensworth Tract, sold the property to create the subdivision Ravensworth Farm, next to the lake.

1965
The Park Authority purchased 242 acres of Lake Accotink property from the federal government for $88,250.

March 1968
Fairfax County got a grant to assist in the purchase of 265 additional acres of park land.

1960
The County Park Authority leased the park land from the federal government for 25 years. Boating rental and a concession stand were established.

1965
The Park Authority purchased 242 acres of Lake Accotink property from the federal government for $88,250.

March 1968
Fairfax County got a grant to assist in the purchase of 265 additional acres of park land.

1968
The dam was dismantled when engineers felt it threatened the safety of the railroad bridge.

1972
The Ravensworth Mansion was constructed.

1957
The last Lee relative, who lived on a portion of the Ravensworth Tract, sold the property to create the subdivision Ravensworth Farm, next to the lake.
The following list of bird species have been spotted at Lake Accotink Park at least once since the first addition to the list in July 1996. The goal of Ornithology and National Audubon Society, eBird provides rich data resources in existence. For example, in May 2015, participants of bird observations made each year by recreational and professional bird watchers. It is amassing one of the largest and fastest growing biodiversity data resources in existence. The eBird's data are shared amongst a wide network of ornithologists, educators, conservationists, and citizen scientists, which in turn informs land management and conservation decisions at the local and regional scales. The vast numbers of observations contributed by birders across the country have resulted in valuable biological data that are used extensively in a wide variety of research studies.
Why manage wildlife in Fairfax County?

It is the responsibility of wildlife managers, natural resource managers and environmental stewards, to preserve wildlife and to protect natural habitats in as many ways as possible.

It is a chosen responsibility to address Human Health & Public Safety issues, mitigate wildlife conflicts, and protect property from actual and potential damage.

What concerns are associated with large populations of Canada geese?

Public Health
• Goose droppings and matted feathers can litter public walkways, athletic fields, golf courses and park benches.
• Goose droppings can be tracked inside of homes, offices and vehicles.

Environmental Impact
• Goose droppings can be tracked inside of homes, offices and vehicles.
• Nesting geese can become aggressive and territorial. Injuries to humans by nesting geese are not common, but have been reported in Fairfax County.

Public Safety
• Goose crossing roads can interfere with traffic or causeoose-vehicle collisions.
• Nesting geese can become aggressive and territorial. Injuries to humans by nesting geese are not common, but have been reported in Fairfax County.

Addling (Oiling)

Addling (Oiling) is an important tool to humanely reduce a goose population over time. Oiling is a technique that prevents embryos from developing by coating eggs with 100% corn oil. The oil traps heat inside the egg and prevents it from further development. Eggs should be addled within 14 days of being laid in the nest. Canada geese are a federally protected species under the Migratory Bird Treaty Act. A federal depredation permit can be obtained online for landowners at no cost.

Landscape Modification

Identify and eliminate or minimize goose attractants in the immediate area:
• Water (pond, fountain, lake)
• Food sources (vegetation, turf grass)
• Nesting areas
Prevent easy access to bodies of water using barriers, grids, or other physical deterrents. Grassy areas can be landscaped with plants that provide physical and visual barriers to deter goose from entering the water. Railings can be installed along a pond or fountain and nearby walkways to provide barrier protection for plants.

The Invasive Management Area (IMA) Volunteer Program is a community-based project designed to reduce invasive plants on our parklands. This unique, volunteer-led program gives residents an opportunity to connect with people while taking care of the natural resources around us. IMA enables community members to help protect the plants and wildlife of Fairfax County’s forests while spending time outdoors, meeting new people and restoring natural habitats.

The Fairfax County Deer Management Program is implemented each year to manage the abundant local white-tailed deer population (Odocoileus virginianus).

The primary objective of the Fairfax County Deer Management Program is deer population control on public parklands. Management actions reflect a variety of interests: protecting human health and safety, reducing environmental damage, conserving biodiversity and maintaining healthy deer herds.

The first fatal deer-vehicle collision in Fairfax County occurred in October 1997. This tragic accident highlighted the concern of many residents that, without natural predators and sufficient hunting pressures, the local deer population had become overabundant.

In January 1998, the Fairfax County Board of Supervisors mandated development of the Fairfax County Deer Management Program in response to concerns of county residents about the growing number and conflicts posed by overabundant deer. The program is implemented by the Fairfax County Police Department in collaboration with the Fairfax County Park Authority and Northern Virginia Regional Park Authority.

An integrated deer management plan was developed using wildlife management program models in other jurisdictions, deer census data, deer behavioral research and ecological impact studies.

Each year, an operational plan is developed to implement sustainable hunting pressures at selected parks based on these approved strategies.

The IMA project began in 2006 with just 20 sites. Since then, over 35 acres have come under IMA management and there are 40 active IMA sites. Many more acres have been treated and restored by contractors and staff.

The goals of IMA are:
• Focus community support and momentum to do something about non-native, invasive plants
• Garner more community involvement and support
• Educate the public about the effects of non-native, invasive plants
• Participate in outreach opportunities regarding non-native, invasive plants
• Develop healthy habitats such as meadows and forests that are free of invasive plant species

Currently, funding is provided by the Fairfax County Board of Supervisors in support of the Environmental Agenda. Grants were provided by PS in 2012, 2013, 2014, 2015, and 2016. The IMA program is supported in part by the Fairfax County Park Foundation. To learn more about how private and corporate donations help restore parkland habitats, please visit http://fairfaxparkfoundation.org/our-projects/invasive-management-area-program-ima/.
Why is it important to understand the soil types?

- Soil type influences the plant communities that are present for example, the amount of moisture available to plants (wetland to desert, upland to streamside).
- Moisture availability is related to the permeability of the soil and pore size. Soil pH can also affect what plant species can grow (acidic, neutral or basic).
- The plants present in the site typically dictate the insects and animals that are present on a site, and so on up the food chain. The basis of most ecosystems can be traced back to the soil qualities.

Soil affects a site’s hydrology, for example, how groundwater moves through the site, how stormwater runoff is captured and dispersed, where water pools and where it drains away from.

- Soil helps keep water clean by filtering pollutants.
- Soil type may constrain the types of development that can occur on a site, due to soil stability and foundation support, whether it can be compacted or not, the particle size, steepness, drainage characteristics etc.
- Soil can store a seed bank for many years.
- Soils contain microbes/fungi that decompose organic material and recycle nutrients.

[Diagram of soil types]

SOIL TYPES AT LAKE ACCOTINK PARK

(39) Glenelg - This Piedmont soil occurs extensively on hills and sidewalls underlain by micaceous schist and phyllite. Silts and clays overlie sandy and sandy decomposed rock. Depth to hardbedrock ranges between 5 and 100 feet below the surface. Permeability is generally adequate for all purposes. Foundation support for small buildings (i.e., 3 stories or less) is typically suitable. Because of a high-clay content, the soil tends to “bell up” when disturbed and is difficult to compact requiring engineering designs for use as structural fill. This soil is suitable for septic drainfields and infiltration trenches. Glenelg is highly susceptible to erosion.

(79) Nathalie - This soil, derived from granite, occurs on hillslopes and sidewalls of the Piedmont. Loams and clays overlie sandy and sandy decomposed rock. Silts and clays may occur within the subsoil. Quartz gravels are common throughout. The soil is well drained. Depth to hardbedrock ranges between 20 and 75 feet. The soil typically provides favorable support for small buildings (i.e., 3 stories or less), but it is best to sink the footer below the clay lens. The clay subsoil is difficult to compact and move when wet. Nathalie is generally well suited for septic drainfields and infiltration trenches, but deep installation (i.e., greater than 6 feet) may be required because of sticky clay in the subsoil. Nathalie is highly susceptible to erosion.

(87) Rhodius - This soil consists of sandy and clayey soil over sandy decomposed granite bedrock. It occurs in the Piedmont on gentle to steep side slopes. Rhodius soil is well drained and bedrock is greater than 6 feet from the surface. Quartz of granite are common throughout. Foundation support is generally good. Suitability for both septic drainfields and infiltration trenches is also good.

(95) Urban Land - This unit consists entirely of man-made surfaces such as pavement, concrete or rooftops. Urban land is impervious and will not influence stormwater. All precipitation landing on Urban Land will be converted to runoff. Urban Land units are atop development disturbed soils. Ratings for this unit are not provided.

(103) Wheaton-Codorus Complex - This complex consists of a mixture of the development-disturbed Wheaton soil and the natural Codorus soil. The complex occurs near floodplains in the areas of the Piedmont with micaceous schist and phyllite bedrock that have been developed, but retain a good portion of undisturbed soil. Wheaton soil will be clustered around foundations, streets, sidewalks, playing fields and other graded areas. Codorus soil will be found along undisturbed areas within and just outside of the floodplain. For a description of the two soils that make up this map unit, please see (102) Wheaton and (73) Codorus.

(105) Wheaton-Glenelg Complex - This complex is a mixture of the development-disturbed Wheaton soil and the natural Glenelg soil. The complex occurs in upland areas of the Piedmont with micaceous schist and phyllite bedrock that have been developed but retain a good portion of undisturbed soil. Wheaton soil will be clustered around foundations, streets, sidewalks, playing fields and other graded areas. Glenelg soil will be found under undisturbed vegetation in ungraded back and front yards and common areas. For a description of the two soils that make up this map unit, please see (102) Wheaton and (79) Glenelg.

(107) Wheaton-Meadowville - This complex is a mixture of the development-disturbed Wheaton soil and the natural Meadowville soil. The complex occurs near floodplains in the areas of the Piedmont with micaceous schist and phyllite bedrock that have been developed, but retain a good portion of undisturbed soil. Wheaton soil will be clustered around foundations, streets, sidewalks, playing fields and other graded areas. Meadowville soil will be found along undisturbed areas within and just outside of the floodplain. For a description of the two soils that make up this map unit, please see (102) Wheaton and (78) Meadowville.

(109) Wheaton-Rhodius Complex - This complex is a mixture of the development-disturbed Wheaton soil and the natural Rhodius soil. The complex occurs near floodplains in the areas of the Piedmont with micaceous schist and phyllite bedrock that have been developed, but retain a good portion of undisturbed soil. Wheaton soil will be clustered around foundations, streets, sidewalks, playing fields and other graded areas. Rhodius soil will be found along undisturbed areas within and just outside of the floodplain. For a description of the two soils that make up this map unit, please see (102) Wheaton and (87) Rhodius.

(113) Wheaton-Sandhills Complex - This complex is a mixture of the development-disturbed Wheaton soil and the natural Sandhills soil. The complex occurs near floodplains in the areas of the Piedmont with micaceous schist and phyllite bedrock that have been developed, but retain a good portion of undisturbed soil. Wheaton soil will be clustered around foundations, streets, sidewalks, playing fields and other graded areas. Sandhills soil will be found along undisturbed areas within and just outside of the floodplain. For a description of the two soils that make up this map unit, please see (102) Wheaton and (91) Sandhills.

(117) Wheaton-Virginia Range Complex - This complex is a mixture of the development-disturbed Wheaton soil and the natural Virginia Range soil. The complex occurs near floodplains in the areas of the Piedmont with micaceous schist and phyllite bedrock that have been developed, but retain a good portion of undisturbed soil. Wheaton soil will be clustered around foundations, streets, sidewalks, playing fields and other graded areas. Virginia Range soil will be found along undisturbed areas within and just outside of the floodplain. For a description of the two soils that make up this map unit, please see (102) Wheaton and (89) Virginia Range.

LAKE ACCOTINK PARK MASTER PLAN REVISION
Streams that have been degraded may need to be restored in order for the stream and its riparian habitat to maintain its ecosystem functionality. While it is natural for streams to move and erode over time, urban streams respond to increases of volume and intensity of storm flows by quickly eroding into oversized channels. Restoring channels reconnects the streams to the floodplain, protects trees and other vegetation and reduces the erosion potential.

Stormwater ponds are designed to detain stormwater runoff during rain events and slowly let the runoff out over a long period of time to the nearest waterway. A pond retrofit consists of changes or improvements made to an existing stormwater pond to provide additional water quantity and/or water quality benefits. One goal of this type of project is to promote infiltration into the ground and use native vegetation to take up excess nutrients in the runoff.

Best Management Practices (BMP)s include a variety of small practice types which are installed as close to possible to where the stormwater runoff is being generated. Depending on the exact type of project, they may be designed to provide water quality treatment, some reduction in stormwater and detention to retain peak flows. Because of their small size, BMPs are ideal practices to be used when retrofitting an existing land use high up in the watershed.
Why do we monitor?

Scientists look at what is living in the streams to help tell us how healthy our watersheds are.

Results from our monitoring program helps identify projects for restoration and protection.

DID YOU KNOW?

There are 60 different species of fish that are found in Fairfax County.

DID YOU KNOW?

The Blacknose Dace (*Rhinichthys atratus*) is the most common fish found in Fairfax County.

Abiotic Monitoring

Biotic Monitoring

FAQ

FAQ

MAP OF FAIRFAX COUNTY MONITORING SITES

Sites are color coded to represent their rating: green (good) to red (very poor).