

NORTHERN REGION OPERATIONS

SIGNAL OPERATIONS – FAIRFAX COUNTY

Ling Li, P.E. Operations Engineering Manager Northern Region Operations (NRO)

November 19, 2019

Presentation Overview

- NRO Transportation Operations Center (TOC) Overview
- Traffic Signal Operations Overview
- Signal Operations Center (SOC) Overview
 - Non-recurring Congestion management
- Signal Timing Optimization Program
 - Recurring Congestion management
- Inter-jurisdictional Signal Coordination
 - NOVA localities and MWCOG
- Traffic Signal Technology Deployments

Transportation Operations Center

McConnell Public Safety & Transportation Operations Center (MPSTOC) – Located in Fairfax County

- County of Fairfax Department of Public Safety Communications (DPSC or 9-1-1 Center)
- County of Fairfax Office of Emergency Management (OEM)
- VDOT Transportation Operations Center (TOC)
- Virginia State Police (VSP) Division 7 Communications Center
- County of Fairfax Police Department Forensic Facility

Transportation Operations Center

The right people with the right tools at the right place at the right time

VDOT TOC: 24/7/365 VDOT Signal Operations Center: 5AM to 9PM Weekday, 9:30AM to 6PM Weekend, and 24-Hour Emergency **VDOT Situation Room: Emergency and Weather Events**

Operations Floor: 12,000sq ft. Partner Supervisors in the center Resource Sharing: video wall and CAD

Fire Dispatch

Police

VDOT /VSP

 $\mathsf{D}\mathsf{D}$

Traffic Signal Operations

Total Number of Signals: 1449

- Fairfax County: 901
- Loudoun County: 212
- Prince William County: 336

Signal Operations Center (SOC)

Real-Time Traffic Signal Management (Non-recurring congestion caused by traffic incidents, special events, work zones, and major weather events)

- Coordinating with freeway management center (TOC)
- Incident notification from TOC and traffic alerts from localities
- Monitor detour routes
- Adjust signal timing in real-time
- Dispatch signal technicians

Operation Hours:

- Weekday: 5:00 am to 9:00 pm Two work shifts
- Weekend: 9:30 am to 6:00 pm One work shift
- Special and Weather Events: 24 hour – 2 shifts

Signal Operations Center (SOC)

Signal System Health Management via Central Signal System (CSS - MIST)

 Signal Control Device Monitoring: Signal on Flashing, Detector Failures, Signal Preemption, Communication Status, Pedestrian Activities

Transportation Applications and Tools for

Arterial Traffic Management:

- CSS: all traffic signals are connected to CSS and can be monitored/adjusted from SOC
- CCTV Cameras and Portable CCTV at Critical Intersections
- Traffic Monitoring Sensors: Traffic Volume and Comparison of Traffic Flows
- Regional Integrated Transportation Information System (RITIS)
- Google Maps and WAZE

Signal Timing Optimization Program

- Goals include reducing recurring congestion, improving mobility while enhancing safety
- An evolving process spanning more than 18 years
- Completed the 5th round of optimization in March, 2019
- Currently working on the 6th round of optimization
- All traffic signals are grouped into 21 networks
- Develop 8 Timing Plans: Weekday (AM, Midday, PM, Off-Peak) Weekend (AM, PM, Saturday Peak and Sunday Peak) based on different traffic patterns
- Special Event Timing Plans: Thanksgiving/Christmas/New Years Holiday season plans; 4th of July plans; school plans; and major construction detour plans
- Incident detour timing plans for major corridors

Signal Timing Optimization Process

- Data Collection
- Data Analysis
- Network Setup
- Optimization
- Simulation

VDO

- Implementation & Fine Tuning
- Evaluation & Recommendation

× 🔟 🕈 🔶 🛉	m Map 🕵 🔛	1. 🛷 🐙 30 🖂 1. Lu/Me				105	4 -	Node	8 33	16	8 18	9 . LOS K	cu - 1	Tripits	+ +	11 4 41	HCM3	2010 - No	de 🚟 LOS La	7.Mit 📕 🖥	105
	4																				
NODE SETTINGS		THENG SETTINGS	1	+			+	1	-	1	2	5	¥.	21	A	•					
		I store and there in the i	10.		Lon	No.	***	Water	ALC: N	1000	Trains .	.105	301	San	HU.	HULD					
		Traffic Matures body	1 1	1010	10	196	3200	- 44	15		112	142	12	103	-						
aut 10	11774/956	Fidera University		1010	10	116	1200	41	15		112	1.42	14	101							
Sort-Ot	2016825	Turn Tape	Port		Pero	Pot		Perm	Solt		Fen	Self		Pero		-					
instice III	0	Protected Phones	1	- 6		5	2		3	3	-	4			-						
urgeon .		Pamiled Phases	1 1		6			2			3			4	-						
and Tupe	ActdCoard	Permitted Flashing Yellow			-			-			-			-	-						
le Levath Ist	220.0	Detector Photons	1	٤.	6		2	2	2	3	2	4	4	- 4	-						
ck Timings		Switch Phase	0	0	0	0	0	a	0	0	0	0	0	a	-						
inize Cycle Length	Openane	Leading Distactor (H)	35	306	46	35	306	-42	36	28	36		36	26		-					
mize Spilts	Opénize	Traing Detector (H)	8	150	40	-5	150	43	-8	- 5	-6		-8	. 8	-	-					
ualed Cycle(s)	220.0	Minimum Imibal (c)	7.0	30.0	20.0	7.0	29.0	20.0	7.0	7.0	7.0	7.0	7.0	7.0							
anal Cycle(s)	150.0	Minimum Spill (z)	16.5	33.5	33.5	17.0	33.5	33.5	52.5	52.5	52.5	16.0	16.0	16.0	-						
sofe Platae	1.00	Total Split (z)	17.0	130.0	130.0	29.0	142.0	142.0	17.0	17.0	37.0	64.0	44.0	44.0							
section Delay (s)	5.45	Yellow Time (s)	5.0	5.5	55	45	5.5	55	4.0	4.0	4.0	4.0	4.0	4.0	-	-					
rection LOS	D	All Red Taxa (c)	4.9	1/0	1.0	5.5	1.0	1.0	45	4.5	4.5	5.0	50	5.0							
	1.00	Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0							
105:	6	Lopping Phase?		2								9		2		-					
x(ii):	56.0	Allow Lead/Lag Optimize?																			
inced to	Bagin of Yellow	Recal Mode	None	C-Max	Citier	None	CHar	C-Mast	None	None	None	None	Nore	Nave		-					
nce Phase:	2-6-W8TE8T	Speed Imit (nph)	-	55			55			75			35	-	-	-					
er Trifersection:		Actuated Elfot. Green MI	7.4	125.4	125.4	17.5	138.9	138.9	7.7	7.7	7.7		35.B	35.8		_					
d Point.	Single	Actuated g/C Ratio	0.03	0.57	0.57	0.08	0.63	0.63	0.04	0.04	0.04		0.16	0.16							
statory Stop On Yellow		Volume to Capacity Radio	0.03	0.38	0.02	0.74	3.06	0.0%	0.25	0.92	0.20		1.06	0.79							
		Control Delay (s)	150.9	24.3	D1	123.9	51.0	0.3	112.7	51.0	3.4		164.8	2.3							
		Gueue Delay (s)	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0		0.0	0.0							
		Total Delay [1]	158.9	24.3	6.1	123.9	51.0	0.3	112.7	51.0	34		164.8	33	-						
		Level of Service	1	c	A	1	D	4		0	A.		100 F	4		-					
		Approach Delay (c)	-	28.2	-		53.7			37,1			109.4	-	-	-					
							D			0			F	-							
		Approach LDS	-								0		-311	0							
		Approach LDS Queue Length SOh (8)	52	291	0	142	~1940	1	22	1.1											
		Approach LDS Queue Length SDh (8) Queue Length 35th (8)	52 #115	251	0	142	-1948 M1961	- 12	22 54	77	0		8511	a		-					
		Approach LDS Queue Length SDh (k) Queue Length 95th (k) Stops hyph	52 #115 32	251 457 604	0	142 167 167	*1940 101901 2712		22 54 15	77	0		8511 167	0							

Signal Timing Optimization Program

Signal Timing Optimization Benefits

- Economic Benefits Based on the 5th Round of Optimization
- Stop, Delay and Fuel Consumption
- Benefit to Cost Ratio 48:1
- Overall Annual Savings \$109.5 M (includes 75.5 M in Fairfax county)
- Environmental Benefits
- Annual Emission Reductions of 638.53 metric tons (includes 416.82 metric tons in Fairfax county)
- Travel Times and Level of Service Improvements
- Update of Pedestrian and Vehicular Clearance times based on latest VDOT guidelines
- Indirect Benefits: Digital Library of signal networks used by VDOT, Counties, and consultant engineers for traffic studies. Accelerate project schedules while reducing project costs
- Operational and Geometric Recommendations

Signal Timing Optimization Program

Signal Timing Constraints:

- Over-Saturated Conditions (Image Below)
- Emergency Vehicle Preemption
- Signal Timing Plan Transition
- Early Green Time Release
- Pedestrian Timing Requirements
- Heavy Traffic Volume on Side Street
- Bi-Directional Traffic
- Lane Reduction (Bottleneck)
- Detector Failure
- Work Zone and Incidents

Inter-jurisdictional Signal Coordination

NOVA Localities:

Arlington County, City of Alexandria, City of Fairfax, Fairfax County DOT, City of Falls Church, Town of Vienna, Town of Herndon, Town of Leesburg, Town of Purcellville, City of Manassas, City of Manassas Park, and Fort Belvoir

- Signal timing coordination at jurisdiction boundaries
- Sharing signal operations experience
- New technology deployments

Washington Metropolitan Council of Government (WMCOG):

National Capital Region – Transportation Planning Broad

System Performance, Operations, and Technology Subcommittee (SPOTS)

Traffic Signal Subcommittee:

- Sharing signal operations best practices, such as signal timing optimization, performance measures, incident management, and major special event management for the region, etc.
- Future technology for transportation

Traffic Signal Technologies Development

VDOT Statewide Central Signal System

- New CSS has been selected
- Planning & Design Phase
- Customization for Initial Deployment
- Implementation 2020

Automated Traffic Signal Performance Measures (ATSPM)

- Test corridor Route 50 from Route 28 to Fair Ridge Drive (14 Signals)
- Monitor signal performance and improve signal timing efficiency

Intelligent Transportation System (ITS) and Connected and Automated Vehicles (CAV) Technology

- ITS Devices (CCTV, DMS, Ramp Metering, traffic sensors, etc.)
- Coordinating with Fairfax County DOT on the automated shuttle pilot project (Fairfax County/Dominion)
- VDOT shares traffic signal data via statewide data portal

Traffic Signal Technologies Development (continued)

Traffic Signal Equipment Enhancement

- Advanced traffic signal controller and firmware: completed installation in 2018
- Enhanced capabilities for pedestrian, bicycle, and transit vehicles: Leading Pedestrian Interval (LPI) and Transit Signal Priority (TSP)
- Flashing Yellow Arrow (FYA)

Network Communication and Security

- All ITS devices (signal controller, video detectors, CCTV) meet Federal and State Cyber Security requirements
- Data storage in cloud

Regional Major Project Coordination

- WMATA Blue/Yellow Lines Platform Repair Summer 2019
- WMATA Orange/Silver Lines Station Shutdown Summer 2020
- I-395 Express Lanes opening Sunday, 11/17/19
- I-66 Outside Beltway Construction
- Richmond Highway Bus Rapid Transit (BRT)

Questions

Ling Li, P.E. Operations Engineering Manager Ling.Li@vdot.Virginia.gov 571-350-2020 (O) 571-437-6694 (C) Ta-Cheng Hsu, P.E. Signal Operations Manager <u>Ta-cheng.Hsu@vdot.Virginia.gov</u> 703-259-3357 (O) 571-437-6726 (C)

VDOT