

Fairfax County Presentation

June 16, 2016

SUPERSTREETS AND MEDIAN U-TURNS

GIL CHLEWICKI, PE ADVANCED TRANSPORTATION SOLUTIONS GCHLEWICKI@ATS-AMERICAN.COM 301.395.9971

OUTLINE

- **1. What are the problems?**
- 2. What is a superstreet and how does it solve the problems?
- 3. What is a median u-turn intersection and its benefits?
- 4. How do pedestrians and bicyclists benefit?
- 5. Are these designs safe?
- 6. Conclusions

WHAT ARE THE PROBLEMS?

Visualize some of the intersections along Route 123 in Tysons.

What do you see? Who do you see?

Insert mental image of your intersection here

WHAT ARE THE PROBLEMS?

- Increasing Congestion
- Too Many Crashes
- Mobility for all modes
 - Bicycles, Pedestrians, Transit
- Not Enough Funding
- Time Consuming Projects
- Inability for more right-of-way
- Impacts of projects
 - Environmental, social, economic

WHY INNOVATIVE INTERSECTIONS & INTERCHANGES?

Congestion cannot always be solved by adding more lanes

Intersections are usually the bottlenecks along high volume roadways.

ST CO

Photo Source: Mark Doctor, FHWA

METHODS OF REDUCING CONGESTION

INCREASE SUPPLY – Add more lanes

REDUCE DEMAND – Change modes of travel, Improve network, Move traffic to locations that still have capacity.

IMPROVE TRAFFIC FLOW – Better signal timing, Eliminating weaving issues, Reduce signal phasing

Basic twophase signal operation

Source: MnDOT Traffic Signal Timing and Coordination Manual

Source: MnDOT Traffic Signal Timing and Coordination Manual

NEW DEVELOPMENT ALONG ARTERIAL

Problem: Proliferation of Four-Phase Signals

Adding more phases "steals" time away from the major through movement and can increase intersection delays

- More phases also add more "lost time"

Adding more phases "increases" the signal cycle length by needing more time for each movement, which causes even more delay

180 Second Cycle

Strategically relocating left turn movements can provide more green time to through traffic

WHAT IS THE SUPERSTREET & WHERE IS IT APPLICABLE?

SUPERSTREET DISTINGUISHING FEATURES

- Cross street (minor road) traffic turns right, then accesses U-turn to proceed in desired direction.
- Main and U-turn intersections can be either signalized ("Superstreet") or not ("J-Turn")

B⁸

SIGNALIZED "SUPERSTREET"

SIGNALIZED "SUPERSTREET"

SR 4 Bypass at Symmes Road in Fairfield, OH

Signalized Superstreet

US-15/501 in Chapel Hill, NC

Superstreet variation with closed median at main intersection (left-turns from major highway made via U-turns)

MD 3 @ Waugh Chapel Road in Crofton, MD (1 hour east of Fairfax)

Superstreet variation with closed median at main intersection (left-turns from major highway made via U-turns)

BETTER SIGNAL OPERATIONS

- Superstreets typically operate with only 2-phases allowing more green time to the major street through
- Shorter cycle lengths than comparable conventional intersections may be possible
 - Shorter cycles reduce delay for most vehicles and for pedestrians

Superstreets offer an ability to have different cycle lengths in the two directions of the major street

BETTER SIGNAL OPERATIONS

Conventional intersection

BETTER SIGNAL OPERATIONS

Superstreet intersection

SUPERSTREET SIMULATION

BI-DIRECTIONAL PROGRESSION

- Each direction may operate independently
- Directions can be progressed at different speeds and/or signal spacing

Note: Assumed progression speed of 50 feet per second (34 mph) in both directions

SUPERSTREET CORRIDOR

US 17 in Brunswick County, NC Wilmington / Leland, NC

SUPERSTREET VIDEO US 17 WILMINGTON/LELAND, NC

WHAT IS THE MEDIAN U-TURN (MUT) & WHERE IS IT APPLICABLE?

MUT – Median U-Turn

(aka Michigan Left)

- At-grade intersections with *indirect* left turns using a U-turn movement in a wide median and/or loon
- The MUT eliminates direct left turns on both intersecting streets, reducing the number of signal phases and conflict points at the main intersection

MUT – LEFT TURN FROM MAJOR ROAD

Vehicles on the major street (or the street with the median) that want to turn left are directed through the main intersection to a U-turn movement at a downstream directional crossover (usually signalized), and proceed back to the main intersection to then turn right onto the minor street.

MUT – LEFT TURN FROM MINOR ROAD

Vehicles on the minor street that wish to turn left at the major street are directed to turn right, make a U-turn movement at the same crossover, and then proceed through the main intersection.

BASIC SIGNAL PHASING

SIGNAL OPERATIONS

The MUT removes left-turn phasing, which results in fewer clearance intervals in the intersection cycle and to operate well with a shorter cycle length than a comparable multi-phase cycle

35 minutes hour northeast of Fairfax, ¼ mile north of Exit 30A off Capital Beltway (I-495)

Median U-Turn Intersection

US 29 and MD 193 (University Blvd) Four Corners (Silver Spring), MD

Median U-Turn Corridors

OK – but ... What if I'm dealing with an existing arterial that doesn't have a median?

U-TURN INTERSECTIONS: THRU TURN

- Similar to MUT in that direct left-turns are eliminated from main intersection
- Substitutes a paved bump-out or "loon" beyond the outside lane (or coinciding with a sidestreet tee intersection or driveway) for the wide median of a MUT

Draper, UT

Advance Signing at ThrU-turn

Tucson, AZ

MULTIMODAL CONSIDERATIONS

SUPERSTREET AND MEDIAN U-TURNS

WHY THE BAD REPUTATION FOR PEDESTRIANS AND BICYCLES FOR SUPERSTREETS?

- Initial superstreets installed in locations without pedestrian/bicycle facilities
- Many positive features for pedestrians and cyclists...
 - Safer for all users
 - Less delay for the majority of movements
- ...but the design is not perfect for crossing the major road
 - Multi-stage crossing for some movements
 - Optimal bicycle crossing is being shown to use pedestrian crossing
- Superstreets have not met their full potential yet
 - Use of u-turn locations for crossings
 - More research on pedestrian and bicycle issues
- Superstreet should provide major improvements for pedestrians and bicycles along a corridor like Route 123

PEDESTRIAN CROSSWALKS

Pedestrian crosswalks and pathways in a superstreet

Question: Will pedestrian crossings take longer in a superstreet?

BETTER SIGNAL OPERATIONS FOR PEDESTRIANS TOO?

					10000
Average	e Delay				120 sec
23 sec	(1 st stage)	N	1	8 sec	43
0-505	ec (2 ^{ma} stage))			

PEDESTRIAN "Z" CROSSING

PEDESTRIAN "Z" CROSSING

PEDESTRIAN "Z" CROSSING

PEDESTRIAN-VEHICLE CONFLICT POINTS

Conventional Intersection 24 conflict points

BICYCLE – MINOR STREET THROUGHS

PEDESTRIAN CROSSINGS

- Major Road
 Crossing
 - 1 or 2 Stages
 - Median Refuge
- Minor RoadCrossing
 - 1 Stage

PEDESTRIAN-VEHICLE CONFLICT POINTS

MUT Intersection 16 conflict points Conventional Intersection **24 conflict points**

At a MUT, the left turns are removed from the main intersection (and shifted to the U-turns located away from the intersection), thus removing pedestrian exposure to left-turning vehicles.

Although the number of pedestrian conflict points at a MUT is reduced, since leftturn demand movements are consolidated into right-turn movements, the total number of vehicles crossing the crosswalk is the same. Consideration of treatments such as a Leading Pedestrian Interval or right turn on red (RTOR) prohibitions may mitigate the conflicts.

PEDESTRIAN WALK PHASES

The two-phase signal at a MUT typically allows a shorter signal cycle length compared to a comparable conventional intersection, but with similar green times for pedestrians and vehicles. This benefits pedestrians by creating more pedestrian phases per hour along with less "don't walk" time between "walk" times (i.e., less wait time between walk signals).

MID-BLOCK PED CROSSING OPTION

BICYCLE – LEFT TURN OPTIONS

SAFETY BENEFITS

SUPERSTREET AND MEDIAN U-TURNS

CONFLICT POINTS

True apple to apple comparison, superstreets only has 12 conflict points with 2 crossing, all other conflicts are due to multi-lanes

VEHICLE-VEHICLE CONFLICT POINTS

Crossing conflicts reduced from 16 to 4 Merging and diverging conflicts are each reduced from 8 to 6

SAFETY PERFORMANCE STUDIES

Dataset	Rate Type	Group	Mean Crash Rates (Crashes/MVE)	
Corridor	All	MUT (Reduction)	1.554 (14%)	
Comaoi		Conventional	1.806	
	All	MUT (Reduction)	1.388 (16%)	
		Conventional	1.644	
Intersection	PDO	MUT (Reduction)	0.982 (9%)	
Related		Conventional	1.077	
	Injury	MUT (Reduction)	0.407 (30%)	
		Conventional	0.58	

MUT intersections show safety performance improvements compared to conventional intersections for most crash types and injury severities.

Source: FHWA Median U-Turn Informational Guide

CONCLUSIONS

SUPERSTREET AND MEDIAN U-TURNS

BENEFITS OF SUPERSTREETS AND MEDIAN U-TURNS

SAFETY

- Fewer
 conflict
 points
- Significant Before/After Crash Reductions

MOBILITY

- Less delay
- Reduced congestion

VALUE

- Less ROW / construction costs
- Implemented quicker
- Better access for residents & businesses

METHODS OF REDUCING CONGESTION

INCREASE SUPPLY – Add more lanes, where possible

REDUCE DEMAND – Change modes of travel, Improve network, Move traffic to locations that still have capacity.

IMPROVE TRAFFIC FLOW – Better signal timing, Eliminating weaving issues, Reduce signal phasing

RESOURCES

For easy access ...

safety.fhwa.dot.gov/intersection/

TYSONS' SUPERSTREET BOULEVARD

QUESTIONS

